www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Lineare Abbildung
Lineare Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:14 Do 29.06.2006
Autor: mathe-trottel

Aufgabe
Markieren Sie die Matrizen, die eine der linearen Abbildungen  [mm] \vektor{x \\ y} [/mm] -->  [mm] \vektor{x + y \\ y-1} [/mm] bz.w  [mm] \vektor{x \\ y \\ z}-->x+y+z [/mm] darstellen.

Also die Matrizen habe ich. Also folgende sind es:

[mm] \vektor{1 & 1 \\ 1 & -1} [/mm]   und    (1  1   1) und  [mm] \vektor{1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1} [/mm]

aber wieso ist das so,das verstehe ich nicht ganz. kann mir das hier vielleicht jemand explizit hier am beispiel zeigen?wäre echt nett, danke schonmal

        
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:59 Do 29.06.2006
Autor: steffenhst

Hallo,

ich bin mir nicht sicher, ob ich richtig verstehe, was dein Problem ist? Du musst doch deine Lösungen irgendwie ermittelt haben oder hast du einfach geraten. Vielleicht hilft das ja:

Grundsätzlich kannst du einer linearen Abbildung eine Matrix zuordnen, nimm z.B.  f ( [mm] \vektor{x \\ y}) [/mm] =  [mm] \vektor{x \\ y}. [/mm] Wenn du hier die Standardbasisvektoren einsetzt, ergibt sich

[mm] f(\vektor{1 \\ 0}) [/mm] =  [mm] \vektor{1 \\ 0} [/mm] = 1 *  [mm] \vektor{1 \\ 0} [/mm] + 0* [mm] \vektor{0 \\ 1}. [/mm] D.h. du suchst dir die x1 (= 1 im Besipiel) und x2 (= 0 im Bsp.) mit der du unter W das Ergebnis darstellst. Machst du das noch mit dem zweiten Standardbasisvektor, dann kriegst du deine Abbildungsmatrix raus (in diesem Fall die 2x2 Einheitsmatirx) diese ergibt sich, indem du deine gefundenen Koeffizienten als Spalten in die Matrix nimmst. Also beim Bsp.:

[mm] \pmat{ 1 & .. \\ 0 & .. } [/mm]

Ist es das was dir probleme machst. Also wie man eine Abbildungsmatrix ermittelt, oder was anderes?

Grüße steffen



Bezug
                
Bezug
Lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 Do 29.06.2006
Autor: mathe-trottel

hallo, man hatte da ankreuzmöglichkeiten,daher weiß ich das. also irgendwie verstehe ich deine erklärung nicht. kannst du das nicht mal an einem beispiel z.b mit der ersten matrix machen?wäre echt super

Bezug
                        
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Do 29.06.2006
Autor: dormant

Hi!

Ich verstehe deine Frage so: von den beiden Abbildungen, die angegeben sind, wähle diese, die auch noch linear ist. Von den beiden ist aber keine linear.

Gruß,
dormant

Bezug
                                
Bezug
Lineare Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:43 Do 29.06.2006
Autor: mathe-trottel

also die matrix mit der diagonalen wo alles einsen sind ,ist nicht linear,aber mich verguckt,aber die ersten beidem müssen es sein

Bezug
        
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Do 29.06.2006
Autor: leduart

Hallo  mathe trottel
Kannst du Matrizen nicht mit Vektoren multiplizieren?
Dann fang doch einfach mal an, bei den meisten matrizen, die dir zur Auswahl stehen gibt es sicher ganz schnell ein ergebnis, das nicht passt,
beii (1,1,1) mal  [mm] \vektor{x \\ y\\z} [/mm] sollte man direkt sehen dass das dasselbe wie das Skalarprodukt ist, sich also x+y+z ergibt. ( eine Zeile mal einer Spalte gibt immer ne Zahl und keinen Vektor.
die letzte matrich  kann keinen Vektor ändern, sie ist also die Identitätsmatrix.
Wenn du die Frage anders meinst musst du sie neu formulieren.
Gruss leduart

Bezug
                
Bezug
Lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 Do 29.06.2006
Autor: mathe-trottel

wir sollten die matrizen beim ankreutest ankreuzen die die oben genannten abbildungen darstellen udn ich weiß nicht wieso diese matrizen die abbilden. kannst du mir das nicht mal mit der 2 x 2 matrix erklären,ist echt wichtig und wäre super wichtig

Bezug
                        
Bezug
Lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Do 29.06.2006
Autor: leduart


> Markieren Sie die Matrizen, die eine der linearen
> Abbildungen  [mm]\vektor{x \\ y}[/mm] -->  [mm]\vektor{x + y \\ y-1}[/mm]

> bz.w  [mm]\vektor{x \\ y \\ z}-->x+y+z[/mm] darstellen.
>  Also die Matrizen habe ich. Also folgende sind es:
>  
> [mm]\vektor{1 & 1 \\ 1 & -1}[/mm]   und    (1  1   1) und  
> [mm]\vektor{1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1}[/mm]

Die Erste Matrix bildet nicht auf   [mm]\vektor{x + y \\ y-1}[/mm]  ab sondern auf:
[mm]\vektor{x + y \\ x-y}[/mm]
Bist du sicher, dass du dich nicht verschrieben hast?

Du hast nicht geschrieben, ob du einen Vektor mit einer Matrix multiplizieren kannst! Wenn das deine Schwiierigkeit ist sieh irgendwo unter Matrixmultiplikation nach!
Dazu nur kurz. Eine Matrix bildet den k-ten Einheitsvektor, also den mit lauter 0 en und einer 1 an der k-ten Stelle auf den k-ten Spaltenvektor ab.
Deine Matrix :
[mm]\vektor{1 & 1 \\ 1 & -1}[/mm]
bildet also [mm] \vektor{1\\0} [/mm] uf [mm] \vektor{1\\1} [/mm] ab, damit [mm] \vektor{x\\0} [/mm]
auf [mm] \vektor{x\\x} [/mm]

[mm] \vektor{0\\1} [/mm] wird auf [mm] \vektor{1\\-1} [/mm] damit
[mm] \vektor{0\\y} [/mm] auf [mm] \vektor{y\\-y} [/mm]

damit wird [mm] \vektor{x\\y}=\vektor{x\\0}+\vektor{0\\y} [/mm] auf [mm] \vektor{x+y\\x-y} [/mm]

Ich hoff das iist jetzt was du brauchst! Sonst sag mal, wie du matrizen mit Vektoren multiplizierst!
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]