www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Linear unabhängige Teilmengen
Linear unabhängige Teilmengen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linear unabhängige Teilmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 So 05.12.2010
Autor: Stern1605

Aufgabe
Gegeben sind die Vektoren

[mm] v_1 [/mm] = [mm] \begin{pmatrix} 1 \\ -1 \\ 0 \\ 2 \end{pmatrix} [/mm] , [mm] v_2 [/mm] = [mm] \begin{pmatrix} 0 \\ 1 \\ 2 \\ -1 \end{pmatrix}, v_3 [/mm] = [mm] \begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}, v_4 [/mm] = [mm] \begin{pmatrix} -1 \\ 1 \\ 0 \\ -2 \end{pmatrix}, v_5 [/mm] = [mm] \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} [/mm]

Geben Sie alle linear unabhängigen Teilmengen von [mm] {v_1, v_2, v_3, v_4, v_5} [/mm] an. Natürlich mit Beweis!

Heißt das, dass ich alle Kombinationen von Vektoren angeben muss, die linear unabhängig sind? Also zum Beispiel [mm] v_3, v_4 [/mm] und [mm] v_5? [/mm] Oder geht das nicht, weil ich dann nur für [mm] x_1 [/mm] und [mm] x_2 [/mm] eine Lösung (nämlich 0) hätte?

Und wenn das so richtig ist, wie sieht dann der Beweis aus? Muss ich die Gleichungssysteme lösen im obigen Beispiel für [mm] x_1 [/mm] und [mm] x_2 [/mm] gleich 0?

Vielen Dank schon einmal im Voraus!

Julia

        
Bezug
Linear unabhängige Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 So 05.12.2010
Autor: wonda

Guck dir an wie du [mm] v_{1} [/mm] bis [mm] v_{5} [/mm] kombinieren kannst ohne das die zusammengepackten Vektoren linear abhängig(l.a.) werden
als Bsp.:

Eine Teilmenge wäre  [mm] T_{1}:=\{v_{1}, v_{2}\} [/mm]
jetzt musst du zeigen ob [mm] v_{1} [/mm] und [mm] v_{2} [/mm] linear unabhängig(l.u.) sind oder eben nicht
ich denke ihr werdet das mit einem Gleichungssystem lösen(hörte sich bei dir so an)
also guckst du für welches [mm] \alpha [/mm] und [mm] \beta [/mm] gilt:
[mm] \alpha\*v_{1}+\beta\*v_{2}=0 [/mm]
gilt dies nur wenn [mm] \alpha=\beta=0 [/mm] dann sind die Vektoren l.u.

[mm] v_{5} [/mm] ist ein spezieller Vektor, der Nullvektor

Hilfe: [mm] \alpha\*\vektor{1 \\ -1\\0\\2}+\beta\*\vektor{0 \\ 0\\0\\0}=0 [/mm]
gibt es Lösungen bei denen [mm] \alpha [/mm] und  [mm] \beta \not=0 [/mm] sind
wenn ja folgt daraus doch aber das die Vektoren l.a. sind

hoffe das hilft dir weiter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]