www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Limes und Minimum
Limes und Minimum < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes und Minimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 Sa 20.11.2010
Autor: cauchy

Aufgabe
Seien [mm] $(a_n)_n)$ [/mm] und [mm] $(b_n)_n)$ [/mm] konvergente reelle Folgen mit Grenzwerten $a$ bzw. $b$. Zeige:

$$ [mm] \lim_{n\to \infty} \min \{a_n,b_n \} [/mm] = [mm] \min \{a,b \}$$ [/mm]

Hallo!

Ich habe schon herausbekommen, dass man erst ab einem bestimmten $n [mm] \ge [/mm] N$ sagen kann, dass [mm] $\min \{a_n,b_n \} [/mm] = [mm] a_n$ [/mm] (für den Fall $a<b$, für den Fall $a>b$ vertausche die Rollen von $a$ und $b$), womit die Behauptung folgt:
$$ [mm] \lim_{n\to \infty} \min \{a_n,b_n \} [/mm] = [mm] \lim_{n\to \infty} a_n [/mm] = a = [mm] \min \{a,b \}$$ [/mm]
So weit, so gut, ich habe jetzt eine grundsätzlichere Frage.
Ein Kommilitone meint, man könne rechnen:
$$ [mm] \lim_{n\to \infty} \min \{a_n,b_n \} [/mm] = [mm] \min \{ \lim_{n\to \infty} a_n, \lim_{n\to \infty} b_n \} [/mm] $$
Dann folge:
$$  [mm] \min \{ \lim_{n\to \infty} a_n, \lim_{n\to \infty} b_n \} [/mm] = [mm] \min \{a, b \} [/mm] = a $$
(Alles gesetzt den Fall $a<b$ )

Meine Frage: Darf man das? Darf man den Limes "reinziehen"? Oder verletzt man dabei irgendwelche Gesetze?
Gruß,
cauchy

        
Bezug
Limes und Minimum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 Sa 20.11.2010
Autor: mathfunnel

Hallo cauchy,

Dein Kommilitone benutzt exakt die Aussage der Aufgabe um die Aussage der Aufgabe zu beweisen.
Deshalb ziehe ich Deine Argumentation vor.

LG mathfunnel



Bezug
        
Bezug
Limes und Minimum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:36 So 21.11.2010
Autor: fred97

Mach Dir das Leben doch einfach:

[mm] $\min \{a,b \}=1/2(a+b-|a-b|)$ [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]