www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Limes Sup / Inf
Limes Sup / Inf < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes Sup / Inf: suche Beispiele
Status: (Frage) beantwortet Status 
Datum: 11:59 Sa 10.11.2007
Autor: Dr.Ogen

Hallo,

wir waren neulich am suchen nach Beispielen von Folgen die keinen echten Grenzwert haben, also deren [mm] \limes_{n\rightarrow\infty} [/mm] nicht exisitiert, die aber einen [mm] \limes_{n\rightarrow\infty}sup [/mm] bzw. [mm] \limes_{n\rightarrow\infty}inf [/mm] besitzen.

Wir haben nur Folgen gefunden deren Argument entweder trigonometrischer Natur war und / oder man das Problem auf ein [mm] (-1)^n [/mm] reduzieren konnte.

Fallen euch noch andere Typen von Folgen ein die keinen [mm] \limes_{n\rightarrow\infty} [/mm] aber dafür einen [mm] \limes_{n\rightarrow\infty}sup [/mm] besitzen?

        
Bezug
Limes Sup / Inf: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:19 So 11.11.2007
Autor: Dr.Ogen

Seid ihr dann wenigstens auch der Auffassung, dass es keine weiteren Folgen geben kann außer solche mit o.g. Bedinungen? Schreibt einfach mal eure Gedanken dazu. Würde mich interessieren.

Bezug
        
Bezug
Limes Sup / Inf: Antwort
Status: (Antwort) fertig Status 
Datum: 00:13 Mo 12.11.2007
Autor: MatthiasKr


> Hallo,
>  
> wir waren neulich am suchen nach Beispielen von Folgen die
> keinen echten Grenzwert haben, also deren
> [mm]\limes_{n\rightarrow\infty}[/mm] nicht exisitiert, die aber
> einen [mm]\limes_{n\rightarrow\infty}sup[/mm] bzw.
> [mm]\limes_{n\rightarrow\infty}inf[/mm] besitzen.
>  
> Wir haben nur Folgen gefunden deren Argument entweder
> trigonometrischer Natur war und / oder man das Problem auf
> ein [mm](-1)^n[/mm] reduzieren konnte.
>  
> Fallen euch noch andere Typen von Folgen ein die keinen
> [mm]\limes_{n\rightarrow\infty}[/mm] aber dafür einen
> [mm]\limes_{n\rightarrow\infty}sup[/mm] besitzen?

naja, ein paar mehr gibt es da schon. Man kann sich im grunde da die wildesten folgen ueberlegen. folgen mit beliebig vielen konvergenten (oder nur teilweise konvergenten) teilfolgen. beispielsweise [mm] $x_n=1$ [/mm] fuer n=$3k$, [mm] $x_n=n$ [/mm] fuer $n=3k+1$ und [mm] $x_n=n^2$ [/mm] fuer $n=3k+2$. das ist eine folge mit drei ziemlich verschiedenen teilfolgen, die keinen limes hat, aber zumindest einen limes inferior.
hoffe, das prinzip ist klargeworden, dass es da im grunde keine beschraenkungen gibt...

gruss
matthias


Bezug
                
Bezug
Limes Sup / Inf: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:01 Mo 12.11.2007
Autor: Dr.Ogen

Da hast du natürlich recht.

Soweit ich weiß ist es ja nicht möglich diese Teilfolgen in eine einzige Folge nur in Abhängigkeit von n auszudrücken. Es geht mir hauptsächlich um die Erkennung von solchen Grenzwerten (bzw. der Problematik) von Folgen die ohne die "geschweifte Klammer-Schreibweise" auskommen.

Gibt es da solche Folgen die nicht [mm] (-1)^n [/mm] oder trigonometrischer Natur sind?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]