www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Limes
Limes < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Limes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Mo 15.11.2004
Autor: nitro1185

Hallo!!Ich hätte eine kurze Frage:

Ich muss folgenden Grenzwert bestimmen-ohne die Regel von L'Hospitla!!!Denn mit der Regel geht es erstens einfacher und ich bin erst im ersten Semester-ich "darf" in Analysis noch nicht differenzieren!!

Also: [mm] \limes_{x \to x_{0}}\bruch{sinx-sinx_{0}}{x-x_{0}} [/mm]

Ich habe probiert mit dem Nenner zu erweitern,dann mit dem Zähler-hat aber nichts gebracht!Vielleicht wisst ihr eine passende Umformung??

MFG Daniel


        
Bezug
Limes: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Mo 15.11.2004
Autor: FriedrichLaher

Hi, Daniel

die Kenntnis der "Additionstheoreme" der Winkelfunktionen ist nützlich

[mm] $\sin [/mm] x - [mm] \sin x_0 [/mm] = [mm] 2*\cos \bruch{x + x_0}{2}\,*\,\sin \bruch{x - x_0}{2}$ [/mm]

es bleibt dann aber immer noch ein elementar zu bestimmender $ [mm] \limes_{ \delta \rightarrow 0}\bruch{\sin \delta}{\delta}$ [/mm]

der mit Ungleichungsüberlegungen von [mm] $\sin \delta,\,\, \delta,\,\,\tan \delta$ [/mm] am Einheitskreis finden ist.
Wollte
man hier dann L'Hospital anwenden hätte man es gleich für die Ursprünglche Aufgabe tun können
und würde in beiden Fällen etwas benutzen das mein eigentlich erst zeigen will.

Bezug
        
Bezug
Limes: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Mo 15.11.2004
Autor: Philipp-ER

Hi.
Da wüsste ich doch spontan mal gerne, wie ihr überhaupt sin und cos definiert habt. Geometrisch wohl kaum, oder? Ich meine, man kann in Analysis 1 ja gar nicht definieren, was eine Bogenlänge ist, also sehe ich auch nicht, wie man das ganze sauber geometrisch aufziehen könnte, es müsste also anders gemacht worden sein.
Poste doch mal bitte eure Definitionen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]