www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Likelihood Schätzer
Likelihood Schätzer < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Likelihood Schätzer: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:33 Di 11.03.2008
Autor: Tim221287

Aufgabe
In einem Teich befinden sich N = 9 Barsche, davon R gestreifte und S = N − R
gefleckte. Bei einer Ziehung von n = 5 Barschen habe man k = 2 gestreifte
gefangen. Bestimmen Sie aufgrund dieses Ergebnisses den Maximum-Likelihood
Schätzer für die Anzahl R der gestreiften Barsche, wenn ohne Zurücklegen
gezogen wird.

Habe die Aufgabe durchgerechnet bin mir aber in keinster weise sicher ob die so richtig ist.

Bedingung: Der schätzwert ist derjenige Wert für R, bei dem die W#keit genau k= 2 Barsche zu fangen, am größten ist

N=9
n=5
k=2
S=3

P(X=2)  =  [mm] \bruch{\pmat{R\\2} * \pmat{9 - R\\3}}{\pmat{9\\5}} [/mm]

Jeweils für R= 2, 3, 4, 5, 6  da R [mm] \not= [/mm] 0, 1, 7, 8, 9


                [mm] \bruch{\pmat{2\\2} * \pmat{9 - 2\\3}}{\pmat{9\\5}} [/mm]  =  [mm] \bruch{1 * 21}{126} [/mm]

                [mm] \bruch{\pmat{3\\2} * \pmat{9 - 3\\3}}{\pmat{9\\5}} [/mm]  =  [mm] \bruch{3 * 20}{126} [/mm]

                [mm] \bruch{\pmat{4\\2} * \pmat{9 - 4\\3}}{\pmat{9\\5}} [/mm]  =  [mm] \bruch{6 * 10}{126} [/mm]

                [mm] \bruch{\pmat{5\\2} * \pmat{9 - 5\\3}}{\pmat{9\\5}} [/mm]  =  [mm] \bruch{10 * 4}{126} [/mm]

                [mm] \bruch{\pmat{6\\2} * \pmat{9 - 6\\3}}{\pmat{9\\5}} [/mm]  =  [mm] \bruch{15 * 1}{126} [/mm]


Wodurch R= 3, 4

Fände es schön wenn das jemand nachrechnen könnte insbesondere da ich mir nicht sicher bin ob die direkte umrechnung von zum Beispiel [mm] \pmat{9 - 2\\3} [/mm] in [mm] \pmat{7\\3} [/mm] stimmt

        
Bezug
Likelihood Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Di 11.03.2008
Autor: luis52

Moin Tim.

sieht gut aus. [ok]

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]