www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Likelihood-Methode
Likelihood-Methode < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Likelihood-Methode: Tipp+Rückfrage
Status: (Frage) beantwortet Status 
Datum: 00:41 Mo 25.07.2011
Autor: leonie86

Aufgabe
Ein Massenartikel entspricht mit Wahrscheinlichkeit p nicht den Qualitätsanforderungen. Die Zufallsgröße X beschreibe die Anzahl der bei einer Qualitätsprüfung untersuchten Artikel vor dem Fund des ersten Ausschußteuls.
a) Welche Verteilung hat X?
b) Bestimme MM- Schätzer p* und den ML- Schätzer p für den unbekannten Parameter p bei einer gegebenen Stichprobe X1,....,Xn.

Hallo, könnte mir bei dieser Aufgabe jemand weiter helfen? Ich stecke irgendwie fest und weiß nicht weiter.
Also zu a) gehe ich von einer geometrischen Verteilung aus.
zu b) den MM- Schätzer habe ich wie folgt ermittelt:
Ex= [mm] \bruch{1}{p} [/mm] --> [mm] p=\bruch{1}{Ex+1} [/mm]

Bei dem MLM-Schätzer komme ich jetzt jedoch nicht weiter:
L(p)= [mm] \produkt_{i=1}^{n}(1-p)^{n}*p [/mm]
dann in die ln Funktion umgewandelt:
ln (p)= [mm] \summe_{i=1}^{n}ln((1-p)^{n}*p) [/mm]
[mm] =\summe_{i=1}^{n}n*ln((1-p)+lnp [/mm]

stimmt das bis dahin? und wie geht es weiter, um die Funktion zu maximieren?

Wäre toll, wenn mir da jemand helfen könnte!

Vielen Dank, leonie




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Likelihood-Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 01:00 Mo 25.07.2011
Autor: qsxqsx

Hallo,

a.) Richtig.

b.) Solltest etwas bei der Notation aufpassen:

1.) L(p) = [mm] \produkt_{i=1}^{n}(1-p)^{X_{i}}\cdot{}p [/mm]

2.) Dann logarithmieren, genau.

3.) Nach p ableiten! Du willst ja wissen für welches p, L(p) maximal wird.

Gruss

Bezug
                
Bezug
Likelihood-Methode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:32 Mo 25.07.2011
Autor: leonie86

Danke für die schnelle Antwort! Genau da hakts leider bei mir gerade.


[mm] \bruch{\partial}{\partial p}=0=xi*\bruch{1}{1-p}+xi*\bruch{1}{p} [/mm]

das stimmt ja hinten und vorne nicht. Wo muss ich denn hier welche Rechenregel anwenden, ich bin mir nicht sicher, wie das mit der Summe und und dem xi funktioniert!?

Bezug
                        
Bezug
Likelihood-Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 07:38 Mo 25.07.2011
Autor: luis52


> Danke für die schnelle Antwort! Genau da hakts leider bei
> mir gerade.

Schreibe

$L(p) = [mm] \produkt_{i=1}^{n}(1-p)^{X_{i}}\cdot{}p=(1-p)^{\sum X_i}p^n [/mm] $ und folge den weiteren Instruktionen von qsxqsx.

vg :uis

Bezug
        
Bezug
Likelihood-Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 07:35 Mo 25.07.2011
Autor: luis52

Moin Leonie

>  zu b) den MM- Schätzer habe ich wie folgt ermittelt:
>  Ex= [mm]\bruch{1}{p}[/mm] --> [mm]p=\bruch{1}{Ex+1}[/mm]

Das ergibt keinen Sinn. Wo geht denn hier die Stichprobe [mm] $X_1,\dots,X_n$ [/mm]
ein? Besser:

[mm] $\bar X=\frac{1}{p}\Rightarrow\dots$ [/mm]    

vg Luis

Bezug
                
Bezug
Likelihood-Methode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:51 Mo 25.07.2011
Autor: leonie86

ok, wenn ich dann logarithmiere:

l (p)= [mm] \summe_{i=1}^{n}xi*ln(1-p)+ln(p^{n}) [/mm]

diese will ich nach p ableiten und maximieren:

[mm] o=\bruch{\partial}{\partialp}l(p)=-\bruch{1}{1-p}*\summe_{i=1}^{n}xi [/mm] + [mm] \bruch{1}{p}*n [/mm]

sieht das soweit in Ordnung aus?? dann:
[mm] \bruch{1}{1-p}*\summe_{}^{}xi=\bruch{1}{p}*n [/mm]

p= [mm] \bruch{n}{\summe_{}^{}xi+1} [/mm]

Vielen Dank schonmal für die Hilfe!



Bezug
                        
Bezug
Likelihood-Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 09:26 Mo 25.07.2011
Autor: schachuzipus

Hallo Leonie,


> ok, wenn ich dann logarithmiere:
>  
> l (p)= [mm]\summe_{i=1}^{n}xi*ln(1-p)+ln(p^{n})[/mm]

Setze besser mal Klammern oder schreibe das [mm]\log(1-p)[/mm] vor!

[mm]\log(L(p))=\log((1-p))\cdot{}\left[ \ \sum\limits_{i=1}^{n}X_i \ \right] \ + \ n\cdot{}\log(p)[/mm]

>  
> diese will ich nach p ableiten und maximieren:
>  
> [mm]o=\bruch{\partial}{\partialp}l(p)=-\bruch{1}{1-p}*\summe_{i=1}^{n}xi[/mm]  + [mm]\bruch{1}{p}*n[/mm] [ok]
>  
> sieht das soweit in Ordnung aus??

Ja!

> dann:
>  [mm]\bruch{1}{1-p}*\summe_{}^{}xi=\bruch{1}{p}*n[/mm]
>  
> p= [mm]\bruch{n}{\summe_{}^{}xi+1}[/mm] ([ok])

Wenn du es so meinst: [mm]p=\frac{n}{\sum\limits_{i=1}^n\red{(}X_i+1\red{)}}[/mm]

Dann noch die Probe, ob dieses mögliche Extremum auch tatsächlich eines ist ...

>  
> Vielen Dank schonmal für die Hilfe!
>  
>  

Gruß

schachuzipus


Bezug
                                
Bezug
Likelihood-Methode: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:05 Di 26.07.2011
Autor: leonie86

Alles klar, vielen Dank für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]