www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "HochschulPhysik" - Lenard-Jomes.Potential
Lenard-Jomes.Potential < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lenard-Jomes.Potential: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Do 11.06.2009
Autor: mb588

Aufgabe
Zur Beschreibung der Wechselwirkung von Atomen wird oftmal das Lennard-Jones-Potential herangezogen.
[mm] V(r)=4\epsilon ((\bruch{\sigma}{r})^{12}-(\bruch{\sigma}{r})^{6}) [/mm] mit [mm] r=\wurzel{x^{2}+y^{2}+z^{2}}. [/mm] Dabei sind Sigma und Epsilon molekülspezifische positive Konstanten der Dimension Energie bzw. Länge.

Enwickeln Sie das Potential um sein Minimum bis zur 2. Ordnung und geben Sie die Frequenz der Eigenschwingung an.

Hey. Also ich hab als erstes das Minimum ausgerechnet. es ist [mm] r=2^{\bruch{1}{6}}\sigma [/mm] und entwickelt hab ich es auch schon um diesen Punkt! Für die Taylor-Reihe ergibt sich:
[mm] P_{V}(r)=(\bruch{72}{\wurzel[3]{2}}-1)\epsilon. [/mm]
Und jetzt habe ich Probleme die Frequenz der Eigenschwingung auszurechnen. Ich weiß das [mm] \omega=2\pi [/mm]  und auch das [mm] \omega=\wurzel{\bruch{k}{m}}. [/mm] Daraus folgt dann [mm] f=\bruch{1}{2\pi}\wurzel{\bruch{k}{m}} [/mm]

Aber da fehlt mir ja noch k?! Irgenwo habe ich gelesen, das k die zweite Ableitung des Potential ist?! Stimmt das so? Wenn ja, wozu brauch ich den die Taylerentwicklung?! Kann mir einer weiterhelfen?

        
Bezug
Lenard-Jomes.Potential: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Do 11.06.2009
Autor: Event_Horizon

Hallo!

Ganz unabhängig von der Art des Potentials ist dessen räumliche Ableitung die Kraft, die auf einen Körper im Potenzial wirkt.

Auf der Erde gilt E(h)=mgh , das kann man auch als Potenzial sehen. Die Ableitung ist die bekannte Kraft F=mg.

Genauso ist das Gravitationspotenzial [mm] V(r)\sim\frac{1}{r} [/mm] und die allgemeine Gravitationskraft daher [mm] \sim\frac{1}{r^2} [/mm] .



Um die Schwingung zu berechnen, würdest du grundsätzlich eine Bewegungsgleichung aufstellen und versuchen zu lösen:

[mm] $$m\ddot{x}+F_\text{Rücktreibend}(x)=0$$ [/mm]

Das [mm] F_\text{Rücktreibend} [/mm] ist die Kraft, die dein Potenzial hervorruft, es ist dessen erste räumliche Ableitung.

Das F ist aber in deinem Fall sehr ungewöhnlich abhängig von x, da wird die Lösung dieser Gleichung schwer. Du könntest das ganze einfach lösen, wenn die Kraft nur linear vom Weg abhängig wäre, das wäre ja eine harmonische Schwingung:
[mm] $$m\ddot{x}+Dx=0 [/mm] \ [mm] \Rightarrow [/mm] \ [mm] \omega=\sqrt{\frac{D}{m}}$$ [/mm]


Aus dem Grund sollst du die Taylorreihe zur 2. Ordnung berechnen. Die Ableitung davon ist erster Ordnung, also linear in x. Damit kannst du das LJ-Potential also mit dem harmonischen Oszillator annähern.




Ich hab jetzt übrigens x genommen, das soll den Abstand zum Minimum darstellen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]