www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Lebesque Maß
Lebesque Maß < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesque Maß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Fr 19.06.2020
Autor: James90

Hallo zusammen,

in einer Übungsklausur steht:

Sei [mm] A\subseteq\IR^d [/mm] messbar, h>0.
Außerdem sei [mm] B=\{(a,t)\in\IR^{d+1}\mid a\in A, t\in[0,h]\}. [/mm]
Ist dann [mm] \lambda^{d+1}(B)=h\lambda^{d}(A)? [/mm]

Als Antwort steht: "Ja, das können Sie an einer einfachen Skizze feststellen".

Skizze schön und gut, aber kann man das nicht auch direkt zeigen?

Vielen Dank und viele Grüße
James

        
Bezug
Lebesque Maß: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Fr 19.06.2020
Autor: Gonozal_IX

Hiho,

> Skizze schön und gut, aber kann man das nicht auch direkt zeigen?

ja, bspw. mit dem Satz von Fubini.

Es ist [mm] $1_B(a,t) [/mm] = [mm] 1_A(a)1_{[0,h]}(t)$ [/mm]

damit folgt:
[mm] $\lambda^{d+1}(B) [/mm] = [mm] \int_B d\lambda^{d+1} [/mm] = [mm] \int_{\IR^{d+1}} 1_B d\lambda^{d+1} [/mm] = [mm] \int_{R^d} \underbrace{\int_\IR 1_A 1_{[0,h]} d\lambda}_{h} d\lambda^d [/mm] = h [mm] \int_{R^d} 1_A d\lambda^d [/mm] = [mm] h\lambda^d(A)$ [/mm]

Gruß,
Gono

Bezug
                
Bezug
Lebesque Maß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Fr 19.06.2020
Autor: James90

Hallo Gono!

> Hiho,
>  
> > Skizze schön und gut, aber kann man das nicht auch direkt
> zeigen?
>  ja, bspw. mit dem Satz von Fubini.
>  
> Es ist [mm]1_B(a,t) = 1_A(a)1_{[0,h]}(t)[/mm]
>  
> damit folgt:
> [mm]\lambda^{d+1}(B) = \int_B d\lambda^{d+1} = \int_{\IR^{d+1}} 1_B d\lambda^{d+1} = \int_{R^d} \underbrace{\int_\IR 1_A 1_{[0,h]} d\lambda}_{h} d\lambda^d = h \int_{R^d} 1_A d\lambda^d = h\lambda^d(A)[/mm]

Super cool, vielen Dank! :-)

Bei der nächsten Menge [mm] $C=\{t(a,0)+(1-t)(p,h)\in\IR^{d+1}\mid a\in A, t\in[0,1]\}$, [/mm] wobei [mm] $p\in\IR^d$ [/mm] wird auch die Frage stellt ob [mm] $\lambda^{d+1}(C)=\frac{h\lambda^{d}(A)}{d+1}$ [/mm] ist.

Könnte man hier das auch direkt berechnen?

[mm] 1_C(t(a,0)+(1-t)(p,h))=t*1_A(a)*1_{[0,1]}(t)+(1-t)(p,h) [/mm]

Dann Aufspaltung durch $[0,1]=[0,h]-[1,h]$? Oder würdest du hier lieber mit [mm] \frac{h\lambda^{d}(A)}{d+1} [/mm] anfangen?

Danke dir nochmal für deine schnelle Antwort!

Viele Grüße
James

Bezug
                        
Bezug
Lebesque Maß: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Sa 20.06.2020
Autor: Gonozal_IX

Hiho,

> [mm]1_C(t(a,0)+(1-t)(p,h))=t*1_A(a)*1_{[0,1]}(t)+(1-t)(p,h)[/mm]

Das ist doch Blödsinn.
Links steht eine Funktion, die entweder 1 oder 0 ist, rechts steht was, was 0,t,(1-t) und 1 sein kann.

Kann das gleich sein?

Also: Neuer Ansatz und Integral dann selbst berechnen!
Wie sieht C für den Fall d=1 denn aus?

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]