www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Lebesgue Messbarkeit
Lebesgue Messbarkeit < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesgue Messbarkeit: Korrektur
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:29 Fr 12.06.2020
Autor: TS85

Aufgabe
1.) z.z., dass für 2 Lebesgue-m.b. Fkt. f und g die Menge [mm] \{x:f(x) \not= g(x)\} [/mm] in [mm] \mathcal{L}(\IR) [/mm] liegt.

2.)Beispiel einer Lebesgue-m.b. Funktion f: [0,1] [mm] \to \IR, [/mm] sodass
keine stetige Funktion g: [0,1] [mm] \to \IR [/mm] existiert mit [mm] \mu_L( \{x:f(x) \not= g(x)\})=0. [/mm] Begründung.





Zur 1.)

Falls f(x) [mm] \not= [/mm] g(x): [mm] \exists [/mm] r [mm] \in \IQ [/mm] mit f(x)<r<g(x) [mm] \vee [/mm] f(x)>r>g(x).
Sei dazu [mm] X=\bigcup_{r \in \IQ}\underbrace{\{x: g(x) X ist damit als abz. Vereinigung wieder messbar.
Da X=Y (Nachweis? Wenn ja Wie?) gilt, folgt die Leb.-Messbarkeit für
[mm] \{x:g(x)f(x)\}, [/mm] woraus die Behauptung folgt.

zur 2.)
Bekannt wäre mir nur der Fall, dass [mm] \underline{eine} [/mm] stetige Fkt existiert, zum Beispiel:

[mm] f(x)=\begin{cases} 1, x \in \IQ \\ e^x, x \notin \IQ \end{cases} [/mm]
[mm] g(x)=e^x [/mm]
mit Nullmenge [mm] N=\{f \not= g\}=\IQ [/mm]
mit [mm] \mu_L(N)=0. [/mm]

Die Formulierung ist mir hier auch etwas wage. Man soll also eine
Funktion f finden zu der jede stetige Fkt. g zu [mm] \mu_L(\{x:f(x) \not= g(x)\})>0 [/mm] führt. D.h. die Menge der x muss schonmal überabzählbar sein, da
dass Lebesgue-Maß vorliegt.

Ich schlussfolgere hieraus, dass f vermutlich keine stetige Funktion sein wird,
da andernfalls immer einfach die gleiche Funktion g gewählt werden könnte.

Ich würde nun bspw.
[mm] f(x)=\begin{cases}0, x \in (\IR\cap[0,0.5])\setminus \IQ\\ 1, x \in (\IR\cap[0.5,1.0]) \setminus\IQ \\2, x \in \IQ \end{cases} [/mm]
setzen, wodurch ich (zumindest) keine
stetige Funktion an der Sprungstelle bei 0.5 finden würde,
d.h. bei g(x)=0
wäre [mm] \mu_L((\IR\cap [/mm] [0.5,1.0]) [mm] \setminus\IQ)=\mu_L(\{x:f(x) \not= g(x)\})>0. [/mm]

Welche Fehler begehe ich in der gesamten Aufgabe?

(Edit: Bereits Fehler des Definitionsbereiches geändert, für Lösungsansatz allerdings erstmal unrelevant; auch habe ich bereits festgestellt, dass
der 3.Fall nicht wirklich mehr Erkenntnis bringt)

Gruß


        
Bezug
Lebesgue Messbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:06 Sa 13.06.2020
Autor: TS85

Die Frage hat sich mittlerweile erledigt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]