www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Lebesgue Integration
Lebesgue Integration < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lebesgue Integration: Frage
Status: (Frage) beantwortet Status 
Datum: 13:00 Fr 29.04.2005
Autor: ishak1981

Ich muss beim untenstehenden Fall die Lebesgue integrierbarkeit zeigen. Ihc weiss dass ich die Stammfunktion bilden muss dann mit Folgenfunktionen die gegen die Funktion konvergieren integral berechnen muss. Aber die Frage ist wie kann ich bei so einem Integral die Stammfunktion bilden. wie macht man das lagemein
Nun die Frage

f(x):= [mm] \integral_{0}^{ \infty} [/mm] { [mm] t^{x-1}exp(-t)dt} [/mm] für alle x>0

danke im voraus

        
Bezug
Lebesgue Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 Fr 29.04.2005
Autor: Stefan

Hallo ishak!

Es handelt sich um die bekannte [mm] $\Gamma$-Funktion [/mm] (Gamma-Funktion).

Du kannst hier den folgenden Satz verwenden:

Ist $I [mm] \subset \IR$ [/mm] ein Intervall und $f: I [mm] \to \IR$ [/mm] Riemann-integrierbar über jedes kompakte Teilintervall von $I$, so ist $f$ genau dann Lebesgue-intergrierbar über $I$, wenn $|f|$ uneigentlich Riemann-integrierbar ist über $I$, und dann stimmt das uneigentliche Riemann-Integral von $f$ über $I$ mit dem Lebesgue-Integral überein.

Das uneigentliche Riemann-Integral existiert aber wegen

$0 [mm] \le t^{x-1}e^{-t} \le \frac{t}{1-x}$ [/mm]    für alle $t>0$

und

$0 [mm] \le t^{x-1}e^{-t} \le \frac{1}{t^2}$ [/mm]   für alle [mm] $t\ge t_0>0$, [/mm]

da [mm] $\lim\limits_{t \to \infty} t^{x+1}e^{-t}=0$. [/mm]

Beachte hierbei, dass

1) das Integral [mm] $\int\limits_0^{t_0} \frac{dx}{x^s}$ [/mm] für $s<1$ konvergiert und

2) das Integral [mm] $\int\limits_{t_0}^{\infty} \frac{dx}{x^s}$ [/mm] für $s>1$ konvergiert.

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]