Laplace/Würfel < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Wie hoch ist die Wahrscheinlichkeit bei 4 Würfen mindestens eine 6 zu würfeln? |
Hab mehrere Ansätze aber weiß nicht welcher der Richtige ist. Ich bitte um eure Hilfe um zu wissen was richtig ist und welche Aussagen jeweils dahinter stecken.
1.Fall:
--> Binomialverteilung
P(X>=1)=1-P(X<1)=1-P(X<=0). Larson-Nomogramm ergibt ungefähr 0,06, also 1-0,06=0,94
2.Fall:
P(X>=1)=1-P(X<1)=1-P(X<=0). Ich könnte doch auch hier einfach 1-P(X=0) machen oder? Also 1-0.0625 = 0,9375 oder?
3.Fall:
A: Mind. 1e Sechs
[mm] A_{1}: [/mm] 1.Wurf 6
[mm] A_{2}: [/mm] 2. Wurf 6
....
--> [mm] P(A)=P(A_{1} \cup A_{2} \cup A_{3}\cup A_{4})= P(A_{1})+P(A_{2})+P(A_{3})+P(A_{4}) [/mm] - [mm] P(A_{1}\cap A_{2 }) [/mm] - alle gegenseitigen Schnittmengen + [mm] P(A_{1} \cap A_{2} \cap A_{3}\cap A_{4}) [/mm]
Hier kommt dann was mit 0,50077 raus. Welche Aussage steckt hinter dieser Rechnung?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:57 Sa 23.06.2012 | Autor: | M.Rex |
Hallo
> Wie hoch ist die Wahrscheinlichkeit bei 4 Würfen
> mindestens eine 6 zu würfeln?
> Hab mehrere Ansätze aber weiß nicht welcher der Richtige
> ist. Ich bitte um eure Hilfe um zu wissen was richtig ist
> und welche Aussagen jeweils dahinter stecken.
>
> 1.Fall:
>
> --> Binomialverteilung
> P(X>=1)=1-P(X<1)=1-P(X<=0). Larson-Nomogramm ergibt
> ungefähr 0,06, also 1-0,06=0,94
>
> 2.Fall:
>
> P(X>=1)=1-P(X<1)=1-P(X<=0). Ich könnte doch auch hier
> einfach 1-P(X=0) machen oder? Also 1-0.0625 = 0,9375 oder?
Wenn du diese beiden Fälle ungerundet gerechnet hättest, würde dasselbe Ergebnis herauskommen.
Diese Aufgabe würde man aber üblicherweise über die Binomialverteilung lösen, also dein Weg 1. Aber P(X=0) kannst du auch in der Tabelle nachschlagen.
>
>
> 3.Fall:
>
> A: Mind. 1e Sechs
> [mm]A_{1}:[/mm] 1.Wurf 6
> [mm]A_{2}:[/mm] 2. Wurf 6
> ....
>
> --> [mm]P(A)=P(A_{1} \cup A_{2} \cup A_{3}\cup A_{4})= P(A_{1})+P(A_{2})+P(A_{3})+P(A_{4})[/mm]
> - [mm]P(A_{1}\cap A_{2 })[/mm] - alle gegenseitigen Schnittmengen +
> [mm]P(A_{1} \cap A_{2} \cap A_{3}\cap A_{4})[/mm]
>
> Hier kommt dann was mit 0,50077 raus. Welche Aussage steckt
> hinter dieser Rechnung?
Bei dieser Lösung übergehst du das "Mindestens". Hier addierst du die Wahrscheinlichkeiten, dass im n-ten Wurf eine sech gewürfelst wird, aber es dürfen ja auch mehrere Sechsen geworfen werden.
Marius
|
|
|
|
|
Ganz kurz nochmal: Dass heißt im 3.Fall hab ich die Wahrscheinlichkeit ausgerechnet genau eine 6 in vier Würfen zu würfeln, richtig?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:22 Sa 23.06.2012 | Autor: | M.Rex |
> Ganz kurz nochmal: Dass heißt im 3.Fall hab ich die
> Wahrscheinlichkeit ausgerechnet genau eine 6 in vier
> Würfen zu würfeln, richtig?
Yep.
Marius
|
|
|
|