www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Laplace-Verteilung
Laplace-Verteilung < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:32 Do 07.02.2008
Autor: jumape

Aufgabe
Seien [mm] X_1,X_2,.... [/mm] unabhängig und [mm] B_{1,p}-verteilt, [/mm] und seien [mm] W_1 [/mm] und [mm] W_2 [/mm] die Wartezeiten bis zum ersten bzw. zweiten Erfolg. ist [mm] W_2 [/mm] gegeben, so ist [mm] W_1 [/mm] Laplace-verteilt:

P( [mm] W_1=k|W_2=n)= \bruch{1}{n-1}, [/mm] k=1,...,n-1

So vom überlegen her ist das ja klar. Wenn wir beim n-ten mal den zweiten Erfolg haben, so muss der erste Erfolg irgendwann davor gewesen sein und da jedes mal gelichwahrscheinlich ist haben wir die gleichverteilung und es ergibt sich [mm] \bruch{1}{n-1} [/mm]
Aber wie zeige ich das formal?

Es wäre nett wenn mir da jemand helfen könnte.

        
Bezug
Laplace-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:22 Fr 08.02.2008
Autor: Zneques

Hallo,

Bei bedingten Wahrscheinlichkeiten ist es meist ratsam mit [mm] P(A|B)=\bruch{P(A \mbox{ }und\mbox{ } B)}{P(B)} [/mm] anzusetzen.
Also :
[mm] P(W_1=k|W_2=n)=\bruch{P(W_1=k \mbox{ }und\mbox{ }W_2=n)}{P(W_2=n)}=... [/mm]

Ciao.

Bezug
                
Bezug
Laplace-Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 So 10.02.2008
Autor: kittie

hallo zusammen!

Sitze an der gleichen Aufgabe, komme aber leider nicht weiter.

Weiß, dass [mm] W_1 [/mm] geometrisch verteilt und [mm] W_2 [/mm] negativ binomialverteilt ist.Aber ich weiß nicht, Wie ich im Zähler mit dem Schnitt umzugehen habe!

Hoffe jemand kann mir da schnellstmöglich helfen.

Viele liebe GRüße, kittie

Bezug
                        
Bezug
Laplace-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 04:38 Mo 11.02.2008
Autor: Zneques

luis52 Antwort erklärt es ja schon alles, allerdings hätte ich für [mm] P(W_2=n)=\summe_{k=1}^{n-1}P(W_1=k,W_2=n)=\summe_{k=1}^{n-1}(1-p)^{n-2}p^2=(n-1)P(W_1=k,W_2=n) [/mm] für bel. [mm] k\in\{1,...,n-1\} [/mm] benutzt.

Ciao.


Bezug
        
Bezug
Laplace-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 So 10.02.2008
Autor: luis52

Hallo ihr beiden,


ihr muesst folgendes nachweisen:

1) [mm] $W_2$ [/mm] ist negativ binomialverteilt mit Wsk-Funktion

[mm] $P(W_2=n)={n-1\choose n-2}p^2(1-p)^{n-2}$ [/mm]

fuer [mm] $n=2,3,\dots$, [/mm] und [mm] $P(W_2=n)=0$ [/mm] sonst. Siehe []hier, Seite 2.

2) Die gemeinsame Wsk-Funktion von [mm] $(W_1,W_2)$ [/mm] ist

[mm] $P(W_1=k,W_2=n)=(1-p)^{n-2}p^2$ [/mm]

fuer [mm] $k,n=1,2,3,\dots$, [/mm] $k<n$ und [mm] $P(W_1=k,W_2=n)=0$ [/mm] sonst.

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]