www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Laplace-Transformation
Laplace-Transformation < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Transformation: Erklärungen
Status: (Frage) beantwortet Status 
Datum: 23:45 Di 03.07.2007
Autor: t04thkl

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt:

Warum heißt das Integral der Laplace Transformation, uneigentliches Parameterintegral?
Wie lässt sich die exponentielle Beschränktheit als Kriterium für die Existenz einer Laplace Transformierten erklären?

Vielen Dank!

        
Bezug
Laplace-Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Mi 04.07.2007
Autor: Somebody


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt:
>  
> Warum heißt das Integral der Laplace Transformation,
> uneigentliches Parameterintegral?

Uneigentlich, weil die obere Grenze [mm]\infty[/mm] des Integrals eine "uneigentliche reelle Zahl" ist.
Parameterintegral, weil [mm]p[/mm] eben ein (komplexer) Parameter ist, keine Konstante.

>  Wie lässt sich die exponentielle Beschränktheit als
> Kriterium für die Existenz einer Laplace Transformierten
> erklären?

Falls [mm]|f(t)| = O(e^{ct})[/mm], für ein [mm]c>0[/mm] gilt, dann klingt der Integrand für [mm]t\rightarrow +\infty[/mm] eben exponentiell ab und deshalb existiert der Wert des "Parameterintegrals" [mm]F(p) := \int_0^\infty e^{-pt} f(t)\, dt[/mm], vorausgesetzt, allerdings, der Realteil des komplexen Parameters [mm]p[/mm] erfüllt die Bedingung [mm]\Re(p) > c[/mm].

Bezug
                
Bezug
Laplace-Transformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:56 Mi 04.07.2007
Autor: t04thkl

Vielen Dank, die Antwort hat mir sehr geholfen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]