www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Laplace-Transformation" - Laplace-Sätze
Laplace-Sätze < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Sätze: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:58 Di 03.01.2012
Autor: summerlove

Aufgabe
f(t) = [mm] \alpha*t [/mm] * cos [mm] (\alpha*t [/mm] + [mm] \delta) *e^{-(\alpha*t+\delta)} [/mm]

[mm] \alpha \in \IR [/mm]
[mm] \delta \in \IR [/mm]

Hallo,

ich komme irgendwie bei dieser Aufgabe nicht weiter.
Wir sollen diese Aufgabe ohne Laplace-Tabellen nur Anhand von Sätzen lösen.

Ich weiß dass es durch die e-Funktion eine Dämpfung ist, aber ich weiß nicht wie ich es schaffe [mm] \alpha*t [/mm] * cos [mm] (\alpha*t [/mm] + [mm] \delta) [/mm]  nur anhand von Sätzen zu lösen, kann mir da vllt jemand einen Tipp geben?

Ich habe versuch cos [mm] (\alpha*t [/mm] + [mm] \delta) [/mm] durch Additionstheoreme umzuformen aber das hat mich nicht weiter gebracht, außerdem habe ich versucht das cos als eulersche Funktion umzuschreiben, aber dies wurde alles zu kompliziert, wo ich mir denke, das geht bestimmt auch leichter, nur sehe ich das nicht.

Ich dachte beim Blick auf die Aufgabe an den Verschiebungssatz, aber bisher habe ich den nur benutzt, wenn vor dem t nichts stand, mit dem Alpha bin ich etwas verwirrt, wie da der Verschiebungssatz gehen soll, falls er hier überhaupt möglich ist.

Und Faltung habe ich auch probiert..aber am Ende hatte ich auch was mit t*sin oder cos raus, wo ich wieder beim selben Problem bin, wie ich das löse.

Ich hoffe jemand hat einen Vorschlag.

Danke schon mal!

LG Summerlove

        
Bezug
Laplace-Sätze: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Di 03.01.2012
Autor: Al-Chwarizmi


> f(t) = [mm]\alpha*t[/mm] * cos [mm](\alpha*t[/mm] + [mm]\delta) *e^{-(\alpha*t+\delta)}[/mm]
>  
> [mm]\alpha \in \IR[/mm]
>  [mm]\delta \in \IR[/mm]
>  Hallo,
>  
> ich komme irgendwie bei dieser Aufgabe nicht weiter.
>  Wir sollen diese Aufgabe ohne Laplace-Tabellen nur Anhand
> von Sätzen lösen.

Na schön - aber worin soll denn die "Aufgabe" überhaupt bestehen ?

Du gibst ja nur eine Funktionsgleichung an, aber keine einzige
Frage, die da zu beantworten oder zu bearbeiten wäre ...

LG  



> Ich weiß dass es durch die e-Funktion eine Dämpfung ist,
> aber ich weiß nicht wie ich es schaffe [mm]\alpha*t[/mm] * cos
> [mm](\alpha*t[/mm] + [mm]\delta)[/mm]  nur anhand von Sätzen zu lösen, kann
> mir da vllt jemand einen Tipp geben?
>  
> Ich habe versuch cos [mm](\alpha*t[/mm] + [mm]\delta)[/mm] durch
> Additionstheoreme umzuformen aber das hat mich nicht weiter
> gebracht, außerdem habe ich versucht das cos als eulersche
> Funktion umzuschreiben, aber dies wurde alles zu
> kompliziert, wo ich mir denke, das geht bestimmt auch
> leichter, nur sehe ich das nicht.
>  
> Ich dachte beim Blick auf die Aufgabe an den
> Verschiebungssatz, aber bisher habe ich den nur benutzt,
> wenn vor dem t nichts stand, mit dem Alpha bin ich etwas
> verwirrt, wie da der Verschiebungssatz gehen soll, falls er
> hier überhaupt möglich ist.
>  
> Und Faltung habe ich auch probiert..aber am Ende hatte ich
> auch was mit t*sin oder cos raus, wo ich wieder beim selben
> Problem bin, wie ich das löse.
>  
> Ich hoffe jemand hat einen Vorschlag.
>  
> Danke schon mal!
>  
> LG Summerlove


Bezug
                
Bezug
Laplace-Sätze: auskunft
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:10 Di 03.01.2012
Autor: summerlove

Man soll bei dieser Aufgabe natürlich die Bildfunktion bestimmen.

Bezug
        
Bezug
Laplace-Sätze: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Di 03.01.2012
Autor: MathePower

Hallo summerlove,

> f(t) = [mm]\alpha*t[/mm] * cos [mm](\alpha*t[/mm] + [mm]\delta) *e^{-(\alpha*t+\delta)}[/mm]
>  
> [mm]\alpha \in \IR[/mm]
>  [mm]\delta \in \IR[/mm]
>  Hallo,
>  
> ich komme irgendwie bei dieser Aufgabe nicht weiter.
>  Wir sollen diese Aufgabe ohne Laplace-Tabellen nur Anhand
> von Sätzen lösen.
>
> Ich weiß dass es durch die e-Funktion eine Dämpfung ist,
> aber ich weiß nicht wie ich es schaffe [mm]\alpha*t[/mm] * cos
> [mm](\alpha*t[/mm] + [mm]\delta)[/mm]  nur anhand von Sätzen zu lösen, kann
> mir da vllt jemand einen Tipp geben?


Hier benötigst Du den Ableitungssatz für den Bildbereich.


>  
> Ich habe versuch cos [mm](\alpha*t[/mm] + [mm]\delta)[/mm] durch
> Additionstheoreme umzuformen aber das hat mich nicht weiter
> gebracht, außerdem habe ich versucht das cos als eulersche
> Funktion umzuschreiben, aber dies wurde alles zu
> kompliziert, wo ich mir denke, das geht bestimmt auch
> leichter, nur sehe ich das nicht.
>  
> Ich dachte beim Blick auf die Aufgabe an den
> Verschiebungssatz, aber bisher habe ich den nur benutzt,
> wenn vor dem t nichts stand, mit dem Alpha bin ich etwas
> verwirrt, wie da der Verschiebungssatz gehen soll, falls er
> hier überhaupt möglich ist.
>  
> Und Faltung habe ich auch probiert..aber am Ende hatte ich
> auch was mit t*sin oder cos raus, wo ich wieder beim selben
> Problem bin, wie ich das löse.
>  
> Ich hoffe jemand hat einen Vorschlag.
>  
> Danke schon mal!
>  
> LG Summerlove


Gruss
MathePower

Bezug
        
Bezug
Laplace-Sätze: Antwort
Status: (Antwort) fertig Status 
Datum: 03:11 Do 05.01.2012
Autor: incubi

Hallo,

du musst die gegebene Funktion zuerst in Abhängigkeit von anderen Funktionen darstellen, um die Sätze anwenden zu können. Z.B wie folgt :

[mm] $f_1(t) [/mm] = [mm] \alpha [/mm] * t * [mm] cos(\alpha [/mm] * t + [mm] \delta)*e^{-(\alpha * t + \delta)} [/mm] = [mm] f_2(\alpha*t)$ [/mm]
$ [mm] f_2(t) [/mm] =  t * cos( t + [mm] \delta)*e^{-( t + \delta)}=f_3(t+\delta)$ [/mm]
$ [mm] f_3(t) [/mm] =  [mm] (t-\delta) [/mm] * cos( t [mm] )*e^{- t } [/mm] = [mm] e^{- t } f_4(t)$ [/mm]
$ [mm] f_4(t) [/mm] = [mm] (t-\delta)*cos(t) [/mm] = [mm] t*f_5(t)-\delta*f_5(t)$ [/mm]
$ [mm] f_5(t) [/mm] = cos(t)$

unter der Annahme dass [mm] $t\geq0$ [/mm] gilt, kann [mm] f_5(t) [/mm] Laplace transformiert werden, anschließend der Multiplikations- und Additionssatz auf [mm] f_4(t) [/mm] angewendet werden usw

Gruß,
incubi


Bezug
                
Bezug
Laplace-Sätze: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:23 Do 05.01.2012
Autor: summerlove

Hallo danke euch für die Antworten, hat mir sehr geholfen!

Liebe Grüße
Summerlove

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]