www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Laplace-Transformation" - Laplace-Rücktransformation
Laplace-Rücktransformation < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Rücktransformation: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:10 Mo 30.04.2012
Autor: handballer1988

Aufgabe
Gesucht ist die inverse LAPLACE-Transformierte der Funktion: [mm] F_{(s)}= \bruch{e^{(-\pi*s)}*(1-2*s)}{(s^2+4*s+5)} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo und guten Abend!


Könnte mir bitte jemand bei o. g. Aufgabe behilflich sein??

Folgenden Ansatz habe ich:

- Den Therm [mm] e^{(-\pi*s)} [/mm] kann ich herausheben uns sofort invers transformieren: [mm] F_{S1}=e^{(-\pi*s)} [/mm] ==> [mm] f_{t1}= \delta(t-\pi) [/mm] (Dirac Delta Funktion)

Danach bleibt mir noch der Therm [mm] \bruch{(1-2*s)}{(s^2+4*s+5)} [/mm] Sieht schon besser aus als die Angabe aber noch nicht wirklich gut...

Ich habe nun eine Partialbruchzerlegung versucht - Ergebniss: Dieser Therm lässt sich nicht weiter zerlegen!

Nun habe ich diesen Therm folgendermaßen aufgespalten: [mm] \bruch{(1-2*s)}{(s^2+4*s+5)} [/mm] = [mm] \bruch{1}{(s^2+4*s+5)}-\bruch{2*s}{(s^2+4*s+5)} [/mm]

Nun kann ich den ersten der Beiden Therme Rücktransformieren und zwar: [mm] F_{S2}=\bruch{1}{(s^2+4*s+5)} [/mm] ==> [mm] f_{t2}=e^{-2*t}*sin(t) [/mm]

Soweit richtig???

Naja sieht ja schon wieder ein bisschen besser aus als am Anfang, nur leider habe ich nun den Therm [mm] -\bruch{2*s}{(s^2+4*s+5)} [/mm] mit dem ich einfach nichts anzufangen weiß!!

Hätte hier bitte jemand einen Tipp  über das weitere Vorgehen bzw. über den bisherigen Lösungsansatz für mich???

Danke und Lg


        
Bezug
Laplace-Rücktransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:07 Di 01.05.2012
Autor: MathePower

Hallo handballer1988,

> Gesucht ist die inverse LAPLACE-Transformierte der
> Funktion: [mm]F_{(s)}= \bruch{e^{(-\pi*s)}*(1-2*s)}{(s^2+4*s+5)}[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo und guten Abend!
>  
>
> Könnte mir bitte jemand bei o. g. Aufgabe behilflich
> sein??
>  
> Folgenden Ansatz habe ich:
>  
> - Den Therm [mm]e^{(-\pi*s)}[/mm] kann ich herausheben uns sofort
> invers transformieren: [mm]F_{S1}=e^{(-\pi*s)}[/mm] ==> [mm]f_{t1}= \delta(t-\pi)[/mm]
> (Dirac Delta Funktion)
>  
> Danach bleibt mir noch der Therm
> [mm]\bruch{(1-2*s)}{(s^2+4*s+5)}[/mm] Sieht schon besser aus als die
> Angabe aber noch nicht wirklich gut...
>  
> Ich habe nun eine Partialbruchzerlegung versucht -
> Ergebniss: Dieser Therm lässt sich nicht weiter zerlegen!
>  
> Nun habe ich diesen Therm folgendermaßen aufgespalten:
> [mm]\bruch{(1-2*s)}{(s^2+4*s+5)}[/mm] =
> [mm]\bruch{1}{(s^2+4*s+5)}-\bruch{2*s}{(s^2+4*s+5)}[/mm]
>  
> Nun kann ich den ersten der Beiden Therme
> Rücktransformieren und zwar: [mm]F_{S2}=\bruch{1}{(s^2+4*s+5)}[/mm]
> ==> [mm]f_{t2}=e^{-2*t}*sin(t)[/mm]
>  
> Soweit richtig???
>  


Ja.


> Naja sieht ja schon wieder ein bisschen besser aus als am
> Anfang, nur leider habe ich nun den Therm
> [mm]-\bruch{2*s}{(s^2+4*s+5)}[/mm] mit dem ich einfach nichts
> anzufangen weiß!!
>  
> Hätte hier bitte jemand einen Tipp  über das weitere
> Vorgehen bzw. über den bisherigen Lösungsansatz für
> mich???

>


Den Nenner hast Du offenbar so zerlegt:

[mm]s^{2}+4s+1=\left(s+2\right)^{2}+1[/mm]  

Zerleger nun den Zähler [mm]-2s[/mm] genau auf diese Weise:

[mm]-2s=a*\left(s+2\right)+n[/mm]


> Danke und Lg

>


Gruss
MathePower  

Bezug
                
Bezug
Laplace-Rücktransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 Di 01.05.2012
Autor: handballer1988

Hallo!


> Den Nenner hast Du offenbar so zerlegt:
>  
> [mm]s^{2}+4s+1=\left(s+2\right)^{2}+1[/mm]  

Genau so ist es!

>
> Zerleger nun den Zähler [mm]-2s[/mm] genau auf diese Weise:
>  
> [mm]-2s=a*\left(s+2\right)+n[/mm]
>  

Wenn ich das richtig verstanden habe, hätte ich den Zähler -2*s zerlegt in:
-2*(s+2)+4

Der "neue" Therm würde dan lauten:

[mm] \bruch{-2*(s+2)+4}{((s+2)^2+1)} [/mm]

Wenn ich nun noch den Nenner in die Therme (-2*(s+2)) und (4) zerlege und die Rücktransformation durchführe erhalte ich:

[mm] f_{t3}=-2*e^{-2*t}*(cos(t)-2*sin(t)) [/mm]

Und für die Gesamttransformation:

[mm] f_{t} [/mm] = [mm] (\delta(t-\pi))*(e^{-2\cdot{}t}\cdot{}sin(t)-2*e^{-2*t}*(cos(t)-2*sin(t))) [/mm]

[mm] f_{t} [/mm] = [mm] (\delta(t-\pi))*e^{-2*t}*(5*sin(t)-2*cos(t)) [/mm]

Ist das so korrekt??

Vielen vielen Dank für diesen Ansatz! Wäre alleine im Leben bicht darauf gekommen! Nur wenn man des Ergebniss sieht, scheint es logisch!!
Lg


Bezug
                        
Bezug
Laplace-Rücktransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 Di 01.05.2012
Autor: MathePower

Hallo handballer1988,

> Hallo!
>  
>
> > Den Nenner hast Du offenbar so zerlegt:
>  >  
> > [mm]s^{2}+4s+1=\left(s+2\right)^{2}+1[/mm]  
>
> Genau so ist es!
>  
> >
> > Zerleger nun den Zähler [mm]-2s[/mm] genau auf diese Weise:
>  >  
> > [mm]-2s=a*\left(s+2\right)+n[/mm]
>  >  
>
> Wenn ich das richtig verstanden habe, hätte ich den
> Zähler -2*s zerlegt in:
>  -2*(s+2)+4
>  
> Der "neue" Therm würde dan lauten:
>  
> [mm]\bruch{-2*(s+2)+4}{((s+2)^2+1)}[/mm]
>  
> Wenn ich nun noch den Nenner in die Therme (-2*(s+2)) und
> (4) zerlege und die Rücktransformation durchführe erhalte
> ich:
>  
> [mm]f_{t3}=-2*e^{-2*t}*(cos(t)-2*sin(t))[/mm]
>  
> Und für die Gesamttransformation:
>  
> [mm]f_{t}[/mm] =
> [mm](\delta(t-\pi))*(e^{-2\cdot{}t}\cdot{}sin(t)-2*e^{-2*t}*(cos(t)-2*sin(t)))[/mm]
>  
> [mm]f_{t}[/mm] = [mm](\delta(t-\pi))*e^{-2*t}*(5*sin(t)-2*cos(t))[/mm]
>  
> Ist das so korrekt??
>  


Für die Argumente der Exponential-, Sinus- und Cosinusfunktion
ist t entsprechend durch [mm]t-\pi[/mm] zu ersetzen.


> Vielen vielen Dank für diesen Ansatz! Wäre alleine im
> Leben bicht darauf gekommen! Nur wenn man des Ergebniss
> sieht, scheint es logisch!!
>  Lg
>  


Gruss
MathePower

Bezug
                                
Bezug
Laplace-Rücktransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:22 Di 01.05.2012
Autor: handballer1988

Super, Danke!

Endlich gelöst!

Letzte Frage noch:

Warum muss ich anstatt (t) [mm] (t-\pi) [/mm] einsetzten??

Bezug
                                        
Bezug
Laplace-Rücktransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Di 01.05.2012
Autor: MathePower

Hallo handballer1988,

> Super, Danke!
>  
> Endlich gelöst!
>  
> Letzte Frage noch:
>  
> Warum muss ich anstatt (t) [mm](t-\pi)[/mm] einsetzten??


Weil Du eine Verschiebung um [mm]\pi[/mm] hast.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]