www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Laplace-Operator
Laplace-Operator < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Operator: Harmonizität
Status: (Frage) beantwortet Status 
Datum: 10:15 Sa 16.11.2013
Autor: mikexx

Aufgabe
Morgen,

es soll nachgerechnet werden, dass die Funktion

[mm] $f(x,\xi)=\frac{1-\lVert x\rVert^2}{\Vert x-\xi\rVert^n}, x\in B_1(0)\subset\mathbb{R}^n,\xi\in S_1(0)$ [/mm]

aufgefasst als Funktion in $x$ in [mm] $B_1(0)\setminus\left\{0\right\}$ [/mm]

eine harmonische Funktion ist.


Das ist natürlich eine Menge Rechenarbeit.



Ich muss also bestätigen, dass

[mm] $\Delta [/mm] f=0$.

Dazu habe ich mir jetzt mal irgendein [mm] $i\in\left\{1,\dots,n\right\}$ [/mm] genommen und versucht, die zweite partielle Ableitung nach [mm] $x_i$ [/mm] zu berechnen.

Ich weiß nicht genau, ob ich hier die ganze Rechnung hinschreiben sollte, weil sie eher länglich ist, aber andererseits müssen Sie meine Rechnung ja irgendwie auch nachvollziehen können, um mir zu sagen, wo ich falsch oder richtig liege.

Ich habe also zunächst die erste partielle Ableitung mit der Quotientenregel ausgerechnet und ich erhalte

[mm] $f_{x_i}=\frac{-2x_i\lVert x-\xi\rVert^n-(1-\lVert x\rVert^2)\frac{n}{2}\lVert x-\xi\rVert^{n-2}(2x_i-2\xi_i)}{\lVert x-\xi\rVert^{2n}}$ [/mm]

Dabei habe ich unter Anderem auch die Kettenregel verwendet, z.B. um [mm] $\frac{\partial}{\partial x_i}(\lVert x-\xi\rVert^n)$ [/mm] zu berechnen. Zur Kontrolle:

[mm] $\frac{\partial}{\partial x_i}(\lVert x-\xi\rVert^n)=\frac{1}{2}n\lVert x-\xi\rVert^{n-2}(2x_i-2\xi_i)$ [/mm]



Vielleicht erstmal nur bis zu dieser Stelle.
Hätte jemand Lust und Muße, mir zu sagen, ob ich bis hierhin korrekt gerechnet habe?


Schöne Grüße!

mikexx


        
Bezug
Laplace-Operator: Zusatzfrage
Status: (Frage) beantwortet Status 
Datum: 13:11 Sa 16.11.2013
Autor: mikexx

Ich frage mal etwas spezieller.

Was ist die partielle Ableitung von [mm] $\lVert x-\xi\rVert^n$ [/mm] nach [mm] $x_i$? [/mm]

Ich habe das, wie gesagt, mit der Kettenregel gemacht.

Zuerst habe ich

[mm] $\lVert x-\xi\rVert^n$ [/mm] geschrieben als [mm] $(\sum_{i=1}^{n}(x_i-\xi_i)^2)^{n/2}$. [/mm]

Als innere Funktionen habe ich dann [mm] $u:=\lVert x-\xi\rVert^2=\sum_{i=1}^{n}(x_i-\xi_i)^2$ [/mm] gesetzt und hiervon ist die partielle Ableitung nach [mm] $x_i$ [/mm] doch [mm] $2x_i-2\xi_i$, [/mm] oder?

Die äußere Funktion [mm] $z:=u^{n/2}$ [/mm] ist, nach u abgeleitet: [mm] $\frac{n}{2}u^{\frac{n}{2}-1}$ [/mm] und nach Resubstituieren ist das

[mm] $\frac{n}{2}\lVert x-\xi\rVert^{n-2}$. [/mm]


Insgesamt komme ich also auf die partielle Ableitung

[mm] $\frac{n}{2}\lVert x-\xi\rVert^{n-2}(2x_i-2\xi_i)$. [/mm]


Stimmt das?

Bezug
        
Bezug
Laplace-Operator: Antwort
Status: (Antwort) fertig Status 
Datum: 10:54 Mo 18.11.2013
Autor: Gonozal_IX

Hallo mikex,

tut mir Leid, dass noch niemand vorher darauf geantwortet hat, obwohl deine Frage eigentlich sehr vorbildlich gestellt war.

Dann wollen wir mal :-)


> [mm]f_{x_i}=\frac{-2x_i\lVert x-\xi\rVert^n-(1-\lVert x\rVert^2)\frac{n}{2}\lVert x-\xi\rVert^{n-2}(2x_i-2\xi_i)}{\lVert x-\xi\rVert^{2n}}[/mm]

$ = [mm] \frac{-2x_i\lVert x-\xi\rVert^n- n (1-\lVert x\rVert^2)\lVert x-\xi\rVert^{n-2}(x_i-\xi_i)}{\lVert x-\xi\rVert^{2n}}$ [/mm]

Und als Tipp: Nun reicht es, den Zähler zu betrachten!
Klammere dann [mm] $\lVert x-\xi\rVert^{n-2}$ [/mm] aus und fasse geeignet zusammen.

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]