www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Laplace-Operator
Laplace-Operator < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Operator: Erklärung
Status: (Frage) beantwortet Status 
Datum: 17:42 Sa 18.06.2011
Autor: Balendilin

Aufgabe
Sei [mm] D\subset \IR^n [/mm] offen. Der Laplace-Operator sei definiert durch:

[mm] \Delta: C^2(D,\IR)\rightarrow C(D,\IR), f\mapsto\sum\limits_{k=1}^n \frac{\partial^2 f}{\partial x^2} [/mm]


Es sei [mm] g\in C^2(\IR,\IR) [/mm]

Aufgabe:

Bestimme jeweils D [mm] \subset \IR^n [/mm] offen so, dass [mm] f\in C^2(D,\IR) [/mm] und berechne [mm] \Delta [/mm] f für
1) f(x)=g(|x|)
2) [mm] f(x)=g(x_1+x_2+...+x_n) [/mm] für [mm] x=(x_1,...,x_n) [/mm]
3) f(x,y)=g(xy) für n=2

Hallo,

ich verstehe leider schon die Aufgabenstellung gar nicht richtig. Was der Laplace-Operator ist, ist mir klar: grad die Summe der zweiten partiellen Ableitungen.
Was ich aber nicht verstehe ist:

i) warum kann ich überhaupt Probleme mit meinem Urbild D bekommen? Warum ist D nicht einfach der ganze [mm] \IR^n? [/mm]
ii) was genau soll ich mit der Info anfangen, dass z.B. f(x)=g(|x|) ?
iii) was ist denn |x|, wenn [mm] x\in\IR^n? [/mm] Ist das einfach die 1-Norm (Summennorm)?

Danke!

        
Bezug
Laplace-Operator: Antwort
Status: (Antwort) fertig Status 
Datum: 08:38 So 19.06.2011
Autor: fred97


> Sei [mm]D\subset \IR^n[/mm] offen. Der Laplace-Operator sei
> definiert durch:
>  
> [mm]\Delta: C^2(D,\IR)\rightarrow C(D,\IR), f\mapsto\sum\limits_{k=1}^n \frac{\partial^2 f}{\partial x^2}[/mm]
>  
>
> Es sei [mm]g\in C^2(\IR,\IR)[/mm]
>  
> Aufgabe:
>  
> Bestimme jeweils D [mm]\subset \IR^n[/mm] offen so, dass [mm]f\in C^2(D,\IR)[/mm]
> und berechne [mm]\Delta[/mm] f für
> 1) f(x)=g(|x|)
>  2) [mm]f(x)=g(x_1+x_2+...+x_n)[/mm] für [mm]x=(x_1,...,x_n)[/mm]
>  3) f(x,y)=g(xy) für n=2
>  Hallo,
>  
> ich verstehe leider schon die Aufgabenstellung gar nicht
> richtig. Was der Laplace-Operator ist, ist mir klar: grad
> die Summe der zweiten partiellen Ableitungen.
>  Was ich aber nicht verstehe ist:
>  
> i) warum kann ich überhaupt Probleme mit meinem Urbild D
> bekommen?


Es soll doch [mm]f\in C^2(D,\IR)[/mm]  sein. Bei 1) wirst Du Probleme mit der Differenzierbarkeit in x=0 bekommen

> Warum ist D nicht einfach der ganze [mm]\IR^n?[/mm]
> ii) was genau soll ich mit der Info anfangen, dass z.B.
> f(x)=g(|x|) ?
>  iii) was ist denn |x|, wenn [mm]x\in\IR^n?[/mm] Ist das einfach die
> 1-Norm (Summennorm)?


Wahrscheinlich: $|x|= [mm] \wurzel{x_1^2+...+x_n^2}$ [/mm]

Gamit ist $g(|x|)=g( [mm] \wurzel{x_1^2+...+x_n^2})$ [/mm]

FRED

>  
> Danke!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]