www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Laplace-Operator
Laplace-Operator < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Operator: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:25 Mo 04.08.2008
Autor: Denny22

Aufgabe
Sei [mm] $\Omega\subset\IR^{d}$ [/mm] eine Gebiet mit [mm] $d\in\IN$ [/mm]

[mm] A\,:=\,-\triangle:\;L^2(\Omega)\supset\D(A)=H^2(\Omega)\cap H_0^1(\Omega)\longrightarrow R(A)=L^2(\Omega)\;\text{mit}\; u(x)\longmapsto -\sum_{i=1}^{d}\frac{\partial^2 u}{\partial x_i^2}(x) [/mm]

Hallo an alle,

ich habe zwei kurze Verständnisfragen.

1) Liege ich richtig mit der Annahme, dass der Laplace-Operator ein auf [mm] $L^2(\Omega)$ [/mm] unbeschränkter (und damit weder ein stetiger noch ein kompakter Operator) ist?

2) Liege ich richtig damit, dass der Laplace-Operator auf dem "richtigen" Definitionsbereich [mm] $H^2(\Omega)\cap H_0^1(\Omega)$ [/mm] ein beschränkter (und damit stetiger und kompakter) Operator ist?

Vielen Dank schon einmal für die Hilfe.

Gruß

        
Bezug
Laplace-Operator: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:07 Fr 08.08.2008
Autor: Denny22

Hallo, hat keiner eine Ahnung was die Beschränktheit des Laplace-Operators anbelangt? Also meine Idee:

zu 1)
Also ich denke, dass der Laplace-Operator auf [mm] $L^2(\Omega)$ [/mm] unbeschränkt ist. Ein leichtes Gegenbeispiel sollte die folgende Funktion
sein:

[mm] $f(x)=e^{-kx}\in L^2(\Omega)$ [/mm] für [mm] ($k\in\IN$) [/mm]

Sie ist zum einen quadratintegrabel, d.h. sie liegt in [mm] $L^2(\Omega)$, [/mm] und lässt sich für jedes feste [mm] $k\in\IN$ [/mm] abschätzen durch

[mm] $\Vert{Af}\Vert_{L^2}=k\cdot\Vert{f}\Vert_{L^2}\quad\forall\,k\in\IN$ [/mm]

Damit finden wir aber keine Konstante $C>0$ mit [mm] $\Vert{Af}\Vert_{L^2}\leqslant C\cdot\Vert{f}\Vert_{L^2}\quad\forall\,f\in L^2(\Omega)$ [/mm] und somit ist der Operator $A$ auf [mm] $L^2(\Omega)$ [/mm] unbeschränkt.

zu 2)
Zum anderen entspricht [mm] $\Vert{Af}\Vert_{L^2}$ [/mm] etwa [mm] $\vert{f}\vert_{H^2}$. [/mm] Somit gilt

[mm] $\Vert{Af}\Vert_{L^2}\,\leqslant\,C\cdot\Vert{f}\Vert_{H^2}\quad\forall\,f\in H^2(\Omega)\cap H_0^1(\Omega)$ [/mm]

trivialerweise.

Hat irgendjemand Einwände?

Bezug
        
Bezug
Laplace-Operator: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:25 Fr 08.08.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]