www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Langrange Multiplikatoren
Langrange Multiplikatoren < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Langrange Multiplikatoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 Do 26.04.2007
Autor: Analytiker

Aufgabe
In zwei Erzgruben entstehen jeweils neben den fixen Kosten von 500 GE die variablen Kosten in Abhängigkeit von den Fördermengen x ME bzw. y ME:

[mm] K_{1} [/mm] = [mm] 0,5x^{2} [/mm] und [mm] K_{2} [/mm] = [mm] y^{2} [/mm] + 2y

Aus beiden Gruben sollen insgesamt 80 ME gefördert werden.

Berechnen Sie die Fördermengen, bei denen die geringsten Gesamtkosten entstehen! Wenden Sie dazu die "Langrange Multiplikatoren" an!

Hi liebe Leute,

ich habe die Aufgabe eigentlich gelöst (hoffe ich *g*), aber ich bin mir nicht ganz sicher ob das so passt. Daher wollte ich euch bitten, einmal drüber zu sehen und mir eine Bestätigung bzw. Korrektur zu geben. Mein Ansatz:

Nebenbedingung: x + y = 80 -> y = 80 - x

-> K(x,y) = 2 * 500 + [mm] K_{1}(x) [/mm] + [mm] K_{2}(y) [/mm]
-> K(x,y) = 1000 + [mm] \bruch{x^{2}}{2} [/mm] + [mm] y^{2} [/mm] + 2y
-> K(x,80-x) = 1000 + [mm] \bruch{x^{2}}{2} [/mm] + (80 - [mm] x)^{2} [/mm] * (80 - x) = Gesamtkostenfunktion

-> L(x,y,z) = K(x,y) + [mm] \lambda [/mm] * g(x,y)
-> Nebenbedingung: x + y = 80 -> 0 = x + y -80
-> K(x,y) = 1000 + [mm] \bruch{x^{2}}{2} [/mm] + [mm] y^{2} [/mm] + 2y + [mm] \lambda(x [/mm] + y -80)

1.) -> [mm] L_{x} [/mm] = x + [mm] \lambda [/mm]
2.) -> [mm] L_{y} [/mm] = 2y + [mm] 2\lambda [/mm]
3.) -> [mm] L_{\lambda} [/mm] = x + y - 80

-> alle nun gleich null setzen:

1.) -> x = -2
2.) -> [mm] -\lambda [/mm] = 2y + 2
3.) -> x + y = 80

daraus folgt:

-> x = 2y + 2
-> (2y + 2) + y = 80

-> y = 26
-> x = 54

Dies sind meine beiden Fördermengen! Ist das so alles (Ergebnis, Wege) ok?

Liebe Grüße
Analytiker
[lehrer]

        
Bezug
Langrange Multiplikatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 08:13 Fr 27.04.2007
Autor: angela.h.b.


> In zwei Erzgruben entstehen jeweils neben den fixen Kosten
> von 500 GE die variablen Kosten in Abhängigkeit von den
> Fördermengen x ME bzw. y ME:
>  
> [mm]K_{1}[/mm] = [mm]0,5x^{2}[/mm] und [mm]K_{2}[/mm] = [mm]y^{2}[/mm] + 2y
>  

> Aus beiden Gruben sollen insgesamt 80 ME gefördert werden.
>  
> Berechnen Sie die Fördermengen, bei denen die geringsten
> Gesamtkosten entstehen! Wenden Sie dazu die "Langrange
> Multiplikatoren" an!


Hallo,

zunächst einmal: das Ergebnis ist richtig.

Da Du es ausdrücklich mit Lagrange-Multiplikatoren machen sollst (käme ein normaler Mensch bei dieser Aufgabe auf solch eine Idee???), würde ich weglassen, was damit nichts zu tun hat, z.B. die Darstellung der Kostenfunktion in Abhängigkeit von x (mit welcher ich normalerweise rechnen würde...).

> Nebenbedingung:

g(x,y)=x + y = 80

> -> y = 80 - x

>
Gesamtkostenfunktion  

> -> K(x,y) = 2 * 500 + [mm]K_{1}(x)[/mm] + [mm]K_{2}(y)[/mm]
>  -> K(x,y) = 1000 + [mm]\bruch{x^{2}}{2}[/mm] + [mm]y^{2}[/mm] + 2y

>  -> K(x,80-x) = 1000 + [mm]\bruch{x^{2}}{2}[/mm] + (80 - [mm]x)^{2}[/mm] *

> (80 - x) = Gesamtkostenfunktion

>  
> -> L(x,y,z) [mm] L(x,y,\lambda)= [/mm] K(x,y) + [mm]\lambda[/mm] * g(x,y)
>  -> Nebenbedingung: x + y = 80 -> 0 = x + y -80

>  -> K(x,y) [mm] L(x,y,\lambda)= [/mm] 1000 + [mm]\bruch{x^{2}}{2}[/mm] + [mm]y^{2}[/mm] + 2y +  [mm]\lambda(x[/mm] + y -80)

>  
> 1.) -> [mm]L_{x}[/mm] = x + [mm]\lambda[/mm]

2.)[mm]L_{y}[/mm] = 2y + 2 +[mm]\lambda[/mm]

>  3.) -> [mm]L_{\lambda}[/mm] = x + y - 80

>  
> -> alle nun gleich null setzen:
>  
> 1.) -> x = -2
>  2.) -> [mm]-\lambda[/mm] = 2y + 2

>  3.) -> x + y = 80

>  
> daraus folgt:
>  
> -> x = 2y + 2
>  -> (2y + 2) + y = 80

>  
> -> y = 26
>  -> x = 54

Gruß v. Angela

Bezug
                
Bezug
Langrange Multiplikatoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:09 Fr 27.04.2007
Autor: Analytiker

Hi Angela,

vielen Dank für deine Antwort. Da hast du natürlich Recht, das ich "K" in Abhängigkeit von "x" weglassen kann... Danke.

Liebe Grüße
Analytiker
[lehrer]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]