www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Lagrangemultiplikatoren
Lagrangemultiplikatoren < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrangemultiplikatoren: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:47 Fr 23.01.2009
Autor: uecki

Aufgabe
Berechnen Sie den kleinsten und grössten Abstand vom Ursprung zur Ellipse
h(x,y)= [mm] x^2 [/mm] + 3xy [mm] +2y^2 [/mm] -4 = 0

(Hinweis: Machen Sie sich die Problemstellung zuerst grafisch klar und berücksichtigen Sie, dass die Wuzelfunktion monoton ist.)

Hallo,

ich habe zu der Aufgabe eine Lösung. Und man geht von Anfang an von der Zielfunktion f(x,y)= [mm] x^2 [/mm] + [mm] y^2 [/mm] aus. Und das verstehe ich nicht. Wie kommt man darauf? Wahrscheinlich irgendwie durch die Nebenbedingung h(x,y) ?
Lg

        
Bezug
Lagrangemultiplikatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Fr 23.01.2009
Autor: fred97


> Berechnen Sie den kleinsten und grössten Abstand vom
> Ursprung zur Ellipse
>  h(x,y)= [mm]x^2[/mm] + 3xy [mm]+2y^2[/mm] -4 = 0
>  
> (Hinweis: Machen Sie sich die Problemstellung zuerst
> grafisch klar und berücksichtigen Sie, dass die
> Wuzelfunktion monoton ist.)
>  Hallo,
>  
> ich habe zu der Aufgabe eine Lösung. Und man geht von
> Anfang an von der Zielfunktion f(x,y)= [mm]x^2[/mm] + [mm]y^2[/mm] aus. Und
> das verstehe ich nicht. Wie kommt man darauf?
> Wahrscheinlich irgendwie durch die Nebenbedingung h(x,y) ?
>  Lg


Sei (x,y) ein Punkt auf der Ellipse. Sein Abstand d(x,y) vom Ursprung ist doch gerade

                     $d(x,y) = [mm] \wurzel{x^2+y^2}$ [/mm]

Diesen Abstand sollst Du minimieren und maximieren. Nun überlege Dir:

    die Funktion d wird in einem Punkt [mm] (x_0,y_0) [/mm] am kleinsten (bzw. größten)

[mm] \gdw [/mm]

     die Funktion [mm] d^2 [/mm] wird in  [mm] (x_0,y_0) [/mm] am kleinsten (bzw. größten).

Es ist [mm] d^2(x,y) [/mm] = [mm] x^2+y^2. [/mm]

Nun wirst Du vielleicht fragen: warum nimmt man [mm] d^2 [/mm] und nicht d ?

Antwort: mit [mm] d^2 [/mm] lässt sich viel bequemer rechnen und man hat auch keinen Ärger mit der Differenzierbarkeit. Bedenke: die Wurzelfkt. ist im Nullpunkt nicht differenzierbar.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]