www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Lagrange minimaler Abstand
Lagrange minimaler Abstand < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange minimaler Abstand: Frage zur Übung
Status: (Frage) beantwortet Status 
Datum: 16:00 So 24.03.2013
Autor: florettmann

Aufgabe
Bestimme mit der Methode von Lagrange ein geeignetes Gleichungssystem, und den minimalen Abstand der beiden Flächen zueinander und die beiden Punkten auf den Flächen mit minimalen Abstand. Geben Sie an, um wie viele Gleichungen und um wie viele Unbekannte es sich handelt. Die Flächen lauten: F: [mm] z=x^2+y^2 [/mm] und [mm] G:(x-2)^2+(y-3)^2+(z+4)^2=1 [/mm]

Hallo, weiss nicht genau wie Anfangen und bei den Anfangsbedingungen bin ich sehr unsicher Wäre sehr froh um eine Hilfe!! Danke und Gruss Thomas

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Lagrange minimaler Abstand: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 So 24.03.2013
Autor: MathePower

Hallo florettmann,

[willkommenmr]


> Bestimme mit der Methode von Lagrange ein geeignetes
> Gleichungssystem, und den minimalen Abstand der beiden
> Flächen zueinander und die beiden Punkten auf den Flächen
> mit minimalen Abstand. Geben Sie an, um wie viele
> Gleichungen und um wie viele Unbekannte es sich handelt.
> Die Flächen lauten: F: [mm]z=x^2+y^2[/mm] und
> [mm]G:(x-2)^2+(y-3)^2+(z+4)^2=1[/mm]
>  Hallo, weiss nicht genau wie Anfangen und bei den
> Anfangsbedingungen bin ich sehr unsicher Wäre sehr froh um


Anfangsbedingungen gibt es hier keine.

Wähle einen Punkt [mm]P_{1}\in F[/mm] und einen Punkt [mm]P_{2} \in G[/mm]
(das sind die Nebenbedingungen) und minimiere dann [mm]\vmat{P_{1}-P_{2}}^{2}[/mm]

Die Punkte müssen verschidene Variablen haben.

[mm]P_{1[/mm] z.B. [mm]\pmat{x \\ y \\ z}[/mm]
[mm]P_{2[/mm] z.B. [mm]\pmat{u \\ v \\ w}[/mm]

Dann hast Du nach Lagrange ein Gleichungssystem
mit 8 Gleichungen und 8 Variablen zu lösen.


> eine Hilfe!! Danke und Gruss Thomas
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]