Lagrange < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Ein 1-Produkt-Unternehmen produziert nach der Kostenfunktion
K(x)=60x+1000
wobei die Prod.-Menge x(in ME) und die Kosten K in Euro angegeben sind. das Produkt wird zu unterschiedlichen Preisen [mm] p_1 [/mm] und [mm] p_2 [/mm] auf zwei Teilmärkten in den Mengen [mm] x_1 [/mm] und [mm] x_2 [/mm] verkauft. Das Unternehmen agiert dort jeweils als Monopolist. Es gelten die Preisabsatzfunktionen
[mm] x_1(p_1,p_2)=500-5p_1+2p_2
[/mm]
[mm] x_2(p_1,p_2)=400+1p_1-3p_2,
[/mm]
wobei die Preise [mm] p_1,p_2 [/mm] ebenfalls in Euro (je ME) und die beiden Absatzmengen [mm] x_1,x_2 [/mm] in ME angegeben sind.
a) Das Unternehmen kann nur 200 Einheiten des Produktes erstellen. Wie viel davon ist auf jedem der beiden Märkte zu verkaufen, welche Preise muss das Unternehmen da verlangen, um einen Maximalen Gewinn zu erzielen und wie groß ist dieser? (Begründen sie das es sich um ein Maximum handelt!)
b) Um wieviel könnte der maximal erzielte Gewinn (aus aufgabe a) näherungsweise gesteigert werden, wenn die Produktionskapazität um 10 ME gesteigert werden könnte? |
So, ich komme eigentlich ganz gut durch, habe folgendes schon errechnet:
[mm] L(p_1) [/mm] = [mm] 700-10p_1+3p_2+4\lambda
[/mm]
[mm] L(p_2) [/mm] = [mm] 460-6p_2+3p_1 +\lambda
[/mm]
[mm] L(\lambda) [/mm] = [mm] -700+4p_1+p_2
[/mm]
aber hier häng ich jetz total...
PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo,
es wäre ganz gut, wenn Du bei ein bißchen etws zu dem Weg, wie Du z.B. zur Lagrangefunktion gekommen bist, schreiben würdest.
Was hast Du dafür alles ausgerechnet und überlegt?
Gruß v. Angela
|
|
|
|
|
> Ein 1-Produkt-Unternehmen produziert nach der
> Kostenfunktion
> K(x)=60x+1000
> wobei die Prod.-Menge x(in ME) und die Kosten K in Euro
> angegeben sind. das Produkt wird zu unterschiedlichen
> Preisen [mm]p_1[/mm] und [mm]p_2[/mm] auf zwei Teilmärkten in den Mengen [mm]x_1[/mm]
> und [mm]x_2[/mm] verkauft. Das Unternehmen agiert dort jeweils als
> Monopolist. Es gelten die Preisabsatzfunktionen
> [mm]x_1(p_1,p_2)=500-5p_1+2p_2[/mm]
> [mm]x_2(p_1,p_2)=400+1p_1-3p_2,[/mm]
> wobei die Preise [mm]p_1,p_2[/mm] ebenfalls in Euro (je ME) und die
> beiden Absatzmengen [mm]x_1,x_2[/mm] in ME angegeben sind.
> a) Das Unternehmen kann nur 200 Einheiten des Produktes
> erstellen. Wie viel davon ist auf jedem der beiden Märkte
> zu verkaufen, welche Preise muss das Unternehmen da
> verlangen, um einen Maximalen Gewinn zu erzielen und wie
> groß ist dieser? (Begründen sie das es sich um ein Maximum
> handelt!)
> b) Um wieviel könnte der maximal erzielte Gewinn (aus
> aufgabe a) näherungsweise gesteigert werden, wenn die
> Produktionskapazität um 10 ME gesteigert werden könnte?
> So, ich komme eigentlich ganz gut durch, habe folgendes
> schon errechnet:
> I. [mm]L(p_1)[/mm] = [mm]700-10p_1+3p_2+4\lambda[/mm]
> II. [mm]L(p_2)[/mm] = [mm]460-6p_2+3p_1 +\lambda[/mm]
> III. [mm]L(\lambda)[/mm] = [mm]-700+4p_1+p_2[/mm]
Hallo,
die partielle Ableitung nach [mm] p_1 [/mm] würde bei mir [mm] 7\red{4}0-10p_1+3p_2+4\lambda [/mm] heißen.
Du mußt nun das GS =0 setzen und nach [mm] p_1, p_2, \lambda [/mm] auflösen.
Das [mm] \lambda [/mm] ist lediglich eine Hilfsvariable, deren Wert überhaupt nicht interessiert.Deshalb ist es oft ganz praktisch, wenn man sich recht schnell von ihr trennt.
Du könntest nun so vorgehen:
Löse II. nach [mm] \lambda [/mm] auf.
Setze dieses [mm] \lambda [/mm] in I. ein. Die entstehende Gleichung I'. enthält nur noch die Variablen [mm] p_1 [/mm] und [mm] p_2.
[/mm]
III. kannst Du leicht nach [mm] p_2 [/mm] auflösen.
Wenn Du dieses [mm] p_2 [/mm] in I' einsetzt, erhältst Du eine Gleichung, die als einzige Variable noch [mm] p_1 [/mm] enthält. Diese kannst Du nun lösen, anschließend ermittelst Du durch Einsetzen v. [mm] p_1 [/mm] in III. das passende [mm] p_2.
[/mm]
Gruß v. Angela
|
|
|
|
|
ja stimmt sind 740, hab ich falsch abgetippt.. Hmm einfach auflösen hab ich noch gar nicht probiert.. .habs auf die komplexen wege versucht ;) Aber wenn man das jetz so sieht, hätt man eigentlich drauf kommen können. ich versuch mal mein glück. wenn ich wieder zu blöd denke siehste gleich ne neue antwort ;)
|
|
|
|
|
jupp. so wars ziemlich einfach. manchmal sieht man den wald vor lauter bäumen nicht.. danke danke
|
|
|
|