www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Lagebeziehung
Lagebeziehung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagebeziehung: Parabel und Gerade
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:02 Do 12.09.2013
Autor: adem61

Aufgabe
Für Welche Werte von a hat Fa die gleiche Form wie P?


Hallo, ich habe die Aufgabe mehrmals versucht habe es gleichgesetzt und bin nicht auf das Ergebnis gekommen. Wäre echt dankbar wenn jemand mir helfen würde.

Vielen Dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

[mm] fa(x)=1/a+1*x^{2}+1-a/2*-1/2*a-1/2 [/mm]

[mm] P:y=-1/4*x^{2}+2x [/mm]

        
Bezug
Lagebeziehung: Funktionsvorschrift?
Status: (Antwort) fertig Status 
Datum: 14:09 Do 12.09.2013
Autor: Roadrunner

Hallo adem,

[willkommenmr] !!


> [mm]fa(x)=1/a+1*x^{2}+1-a/2*-1/2*a-1/2[/mm]

Leider ist (zumindest mir) die genaue Funktionsvorschrift nicht klar.

Meinst Du:

[mm] $f_a(x) [/mm] \ = \ [mm] \bruch{1}{a}+1*x^2+1-\bruch{a}{2}-\bruch{1}{2}*a-\bruch{1}{2}$ [/mm]

Eher nicht ... [aeh]


Ich vermute eher, dass es etwas heißen soll wie:

[mm] $f_a(x) [/mm] \ = \ [mm] \bruch{1}{a+1}*x^2 [/mm] \ + \ ...$

Du musst hier also entweder zwingend Klammern setzen oder unseren Formeleditor verwenden.

Aus meiner Vermutung ergibt sich als Bestimmungsgleichung aber auch sofort:

[mm] $\bruch{1}{a+1} [/mm] \ = \ [mm] -\bruch{1}{4}$ [/mm]


Gruß vom
Roadrunner

Bezug
                
Bezug
Lagebeziehung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Do 12.09.2013
Autor: adem61

Es sollte  [mm] f_a(x) [/mm] = [mm] \bruch{1}{a+1}\cdot{}x^2+a/2*X-1/2*a-1/2 [/mm]  heißen.

Aber komm trotzdem nicht auf das Lösungsweg.

Danke im voraus.



Bezug
                        
Bezug
Lagebeziehung: keine Lösung
Status: (Antwort) fertig Status 
Datum: 20:44 Do 12.09.2013
Autor: Roadrunner

Hallo!


Hm, ich erhalte ebenfalls keine Lösung, da das aufzustellende Gleichungssystem (Stichwort: Koeffizientenvergleich) nicht eindeutig lösbar ist.


Gruß vom
Roadrunner

Bezug
                        
Bezug
Lagebeziehung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:25 Do 12.09.2013
Autor: abakus


> Es sollte [mm]f_a(x)[/mm] =
> [mm]\bruch{1}{a+1}\cdot{}x^2+a/2*X-1/2*a-1/2[/mm] heißen.

>

> Aber komm trotzdem nicht auf das Lösungsweg.

>

> Danke im voraus.

Hast du vor dem Abschicken mal den Vorschau-Knopf gedrückt?
Ich glaube kaum, dass der hintere Teil der Gleichung so aussehen soll...
Gruß Abakus
>
>

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]