Lage von Punkt im Dreieck < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:09 Fr 24.03.2006 | Autor: | maxxam |
Aufgabe | Beweisen sie, dass ein Punkt genau dann im Dreieck liegt, wenn für seine Parameter r und s die folgenden drei Bedingungen erfüllt sind:
0<r<1
0<s<1
0<r+s<1 |
hi,
also erstmal das da oben sollen keine "größer-als-zeichen" sondern "größer-gleich-zeichen" sein hab das symbol nicht gefunden^^.
In meinem Buch wird das prüfen ob ein Punkt auf einem Dreieck liegt erstmal anhand dieses Beispiels erklärt (nur zum einfacheren Verständnis:
Das Dreieck wird aus den punkten ABC gebildet und es soll geprüft werden ob P innerhalb dieses Dreiecks liegt
A (4/4/1) (Stützvektor)
B(1/4/1) (Spannvektor)
C(0/0/5) (Spannvektor)
P(1/2/3)
Ebenengleichung: [mm] \vektor{ 4 \\ 4 \\ 1 }+r*\vektor{ -3 \\ 0 \\ 0 }+s*\vektor{ -4 \\ -4 \\ 4}
[/mm]
setzt man P mit der Ebenengleichung gleich erhält man für s=1/2 und r=1/3. Diese erfüllen ja alle drei bedingungen daher liegt der Punkt P auf dem Dreieck.
Die drei oben angegeben Bedingungen stehen in jeder Formelsammlung.
Mir ist es auch vollkommen klar warum r und s für sich jeweils innerhalb von 0 und 1 liegen müssen und ich habe es auch graphisch verstanden das r+s zwischen 0 und 1 liegen, aber mein Problem ist es, das auch mathematisch zu beweisen.
Wenn einer weiter weiß würd mich freuen
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:03 Fr 24.03.2006 | Autor: | chrisno |
Um das richtig zu beweisen, brauchst Du eine Definition eines Dreiecks. Die muss im Buch stehen. Vielleicht ist aber auch kein richtiger Beweis gemeint. Wenn Du die Bedingungen für r und s einzeln verstanden hast, dann ist es nur ein kleiner Schritt weiter: Nimm mal r = 0 und variiere s. So wird eine Kante abgefahren. Entsprechend für s = 0 und r variiert. Fehlt noch die dritte Kante.
Wenn [mm]\vec{a}[/mm] und [mm]\vec{b}[/mm] das Dreieck aufspannen, dann fährt [mm]\vec{a} + \lambda (\vec{b}-\vec{a})[/mm] mit [mm] 0 \leq \lambda \leq 1[/mm] die dritte Kante ab. Mit ein wenig Umformen siehst Du, das daraus die Bedingung r+s=1 wird. Nun musst Du noch erläutern, das mit < 1 die Punkte in der Fläche zwischen den Kanten getroffen werden.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:36 So 26.03.2006 | Autor: | maxxam |
Hi danke erstmal für die antwort. Ich verstehe deinen ansatz und genau das meinte ich auch damit, dass ich prinzipiell verstanden habe, weshalb 0<r+s<1 sein muss, aber auch mit deinen ansätzen ist es mir leider nicht gelungen es rein formell und allgemein zu beweisen.
Wäre für weitere hilfe dankbar.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:45 So 26.03.2006 | Autor: | chrisno |
Ich habe den Verdacht, dass die Aufgabe schlecht formuliert ist. Wenn Du das beweisen sollst, dann brauchst Du eine Definition eines Dreiecks. Die musst Du finden, sie sollte im Buch stehen. Dann kannst Du nachweisen, dass die Punktmenge mit den Bedingungen für r und s diese Definition erfüllt.
Wenn eine solche Definition nicht im Buch zu finden ist, dann ist die Aufgabe falsch gestellt. So etwas kommt häufig vor. Dann sollte sie heißen: Erläutern SIe, warum mit folgenden Bedingunen eine Definitioin eines Dreiecks gegeben wird.
|
|
|
|