www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "VK 29: Oberstufenmathematik" - Lage Gerade-Gerade IV
Lage Gerade-Gerade IV < VK 29: Oberstufe < VK Abivorbereitungen < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "VK 29: Oberstufenmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lage Gerade-Gerade IV: anal. Geom. der Geraden
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 17:31 Di 30.12.2008
Autor: argl

Aufgabe

Prüfen Sie welche Lage die Gerade [mm] $g:\vec{x}=\vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2}$ [/mm]  und die Gerade [mm] $h:\vec{x}= \vec{q} [/mm] + s * [mm] \vec{n}$ [/mm] zueinander haben !

a) [mm] $\vec{q} [/mm] = [mm] \vektor{1 \\ 0 \\ 3}$ $\vec{n} [/mm] = [mm] \vektor{2,5 \\ -10 \\ 5}$ [/mm]

b) [mm] $\vec{q} [/mm] = [mm] \vektor{-1 \\ 12 \\ -5}$ $\vec{n} [/mm] = [mm] \vektor{0,25 \\ -1 \\ 0,5}$ [/mm]

c) [mm] $\vec{q} [/mm] = [mm] \vektor{1 \\ 0 \\ -1}$ $\vec{n} [/mm] = [mm] \vektor{-1 \\ 8 \\ -2}$ [/mm]



        
Bezug
Lage Gerade-Gerade IV: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 22:12 Sa 25.04.2009
Autor: Schachschorsch56

[mm] a)g:\vec{x}=\vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2} h:\vec{x}=\vektor{1 \\ 0 \\ 3}+s\cdot\vektor{2.5 \\ 10 \\ 5} [/mm]

a)1. g und h parallel ?

Ja !, denn es gilt [mm] r\cdot\vektor{-1 \\ 4 \\ -2}= \vektor{2.5 \\ 10 \\ 5} [/mm] für r=-2.5

a)2. g und h identisch ?

Nein !, denn für die Gleichung [mm] \vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2}=\vektor{1 \\ 0 \\ 3} [/mm] gibt es kein r, das das LGS erfüllt !

[mm] b)g:\vec{x}=\vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2} h:\vec{x}=\vektor{-1 \\ 12 \\ -5}+s\cdot\vektor{0.25 \\ -1 \\ 0.5} [/mm]

b)1. g und h parallel ?

Ja ! denn es gibt ein s=-4, das die Gleichung [mm] \vektor{-1 \\ 12 \\ -5}+s\cdot\vektor{0.25 \\ -1 \\ 0.5}=\vektor{-1 \\ 4 \\ -2} [/mm] erfüllt !

b)2. sind g und h identisch ?
Ja ! denn es gilt:

[mm] \vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2}=\vektor{-1 \\ 12 \\ -5} [/mm] für r=3 und
[mm] \vektor{-1 \\ 12 \\ -5}+s\cdot\vektor{0.25 \\ -1 \\ 0.5}=\vektor{2 \\ 0 \\ 1} [/mm] für s=12

[mm] c)g:\vec{x}=\vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2} h:\vec{x}=\vektor{1 \\ 0 \\ -1}+s\cdot\vektor{-1 \\ 8 \\ -2} [/mm]

c)1. g und h parallel ?

Nein !, denn für die Gleichung [mm] r\cdot\vektor{-1 \\ 4 \\ -2}=\vektor{-1 \\ 8 \\ -2} [/mm] gibt es kein r, das das LGS erfüllt !

c)3. Gibt es einen Schnittpunkt der Geraden g und h ?

ich setze [mm] \vektor{2 \\ 0 \\ 1}+r\cdot\vektor{-1 \\ 4 \\ -2}=\vektor{1 \\ 0 \\ -1}+s\cdot\vektor{-1 \\ 8 \\ -2} [/mm] und schreibe das LGS:

I 2 - r = 1 -s
II 4r = 8s  [mm] \Rightarrow [/mm] r=2s setze r in I und III ein
III 1 - 2r = -1 - 2s

I 2 - 2s = 1 -s [mm] \Rightarrow [/mm] s=1
III 1 - 4s = -1 - 2s [mm] \Rightarrow [/mm] s=1 [mm] \Rightarrow [/mm] r=2

es gibt also einen Schnittpunkt S. Ich setze s=1 in h und r=2 in g ein:

[mm] \overrightarrow{OS}=\vektor{1 \\ 0 \\ -1}+1\cdot\vektor{-1 \\ 8 \\ -2}=\vektor{0 \\ 8 \\ -3} [/mm] und
[mm] \overrightarrow{OS}=\vektor{2 \\ 0 \\ 1}+2\cdot\vektor{-1 \\ 4 \\ -2}=\vektor{0 \\ 8 \\ -3} [/mm] stimmt überein, damit

haben wir als Schnittpunkt S (0|8|-3)

Schorsch

Bezug
                
Bezug
Lage Gerade-Gerade IV: alles okay!
Status: (Antwort) fertig Status 
Datum: 09:27 So 26.04.2009
Autor: Loddar

Hallo Schorsch!


Alles korrekt gelöst. [ok]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "VK 29: Oberstufenmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]