www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Längen und Winkel im Dreieck
Längen und Winkel im Dreieck < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Längen und Winkel im Dreieck: Konkrete Längen und Winkelber.
Status: (Frage) beantwortet Status 
Datum: 15:10 Fr 10.11.2006
Autor: Nico0175

Aufgabe
Gegeben ist ein Dreieck mit den Seiten a,b,c.
Seite b ist ein Meter länger als Seite a.
Seite c ist ein Meter kürzer als Seite a.
Der größte Winkel im Dreieck ist doppelt so groß wie der kleinste Winkel.
Wie lang ist Seite a?
(Es wird eine elegante Lösung gesucht, also nur ein paar Zeilen, keine Seitenlange Rechnung).

Es ist keine Problem, über zig Umstellungen von Sinus- und Cosinussatz usw. zum Ergebnis zu kommen. Hat aber eine Idee, wie das Problem elegant und in ein paar Zeilen zu lösen ist? Über Ansätze wäre ich dankbar.
Nico.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Längen und Winkel im Dreieck: Einfach mit Sinussatz
Status: (Antwort) fertig Status 
Datum: 18:04 Fr 10.11.2006
Autor: otto.euler

Wegen b>a>c folgt [mm] \beta>\alpha>\gamma. [/mm] Laut Aufgabenstellung ist b=a+1 und c=a-1 und [mm] \beta=2*\gamma. [/mm] Also [mm] \alpha=\pi-3*\gamma. [/mm]
Mit Sinussatz folgt: [mm] \bruch{a}{sin(3\gamma)}=\bruch{a+1}{sin(2\gamma)}=\bruch{a-1}{sin\gamma} [/mm]
Letzte Gleichung umgeformt liefert [mm] cos\gamma=\bruch{a+1}{2*(a-1)} [/mm]
Erster und dritter Term liefert [mm] \bruch{a}{a-1}=3-4*sin^2(\gamma)=-1+\bruch{(a+1)^2}{(a-1)^2} [/mm] wobei [mm] cos^2+sin^2=1 [/mm] verwendet wurde.
Weitere Umformung liefert [mm] a^2=5*a. [/mm] Bei a=0 liegt kein wirkliches Dreieck vor, so dass als Lösung a=5 verbleibt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]