Länge von Vektoren < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Gegeben seien die Punkte A, B, C und D.
a) Bestimme die Länge der Vektoren [mm] \vec{a} [/mm] = [mm] \overrightarrow{AB} [/mm] und [mm] \vec{b} [/mm] = [mm] \overrightarrow{CD} [/mm] und den Cosinus des von [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] eingeschlossenen Winkels.
b) Man berechne die Länge der Vektoren [mm] \vec{u} [/mm] = [mm] 2\vec{a} [/mm] - [mm] \vec{b} [/mm] und [mm] \vec{v} [/mm] = [mm] 3\vec{a} [/mm] + [mm] 2\vec{b} [/mm] anhand der
1.) Rechnung mit Koordinaten,
2.) Regeln für das Skalarprodukt und der Ergebnisse von (a). |
Hallo Welt da draußen,
den Aufgabenteil a habe ich soweit bearbeitet und berechnet. Mein Problem bei Teil B ist die Aufgabenstellung. Unter Rechnung mit Koordinaten stelle ich mir vor, dass ich wie gewohnt den Betrag des Vektors nehme und die Länge anhand der x-y-z-Kompontenten bestimme, also [mm] \parallel\vec{u}\parallel [/mm] = [mm] \wurzel{x^2 + y^2 +z^2}. [/mm] Ist diese Vermutung richtig?
Keine Idee habe ich gerade bei 2. Welche Regeln soll ich hier anwenden? Ich habe wirklich keinerlei Idee. Wäre es möglich mir einen Tipp zu geben, wie ich überhaupt beginnen kann?
Vielen Dank und viele Grüße schonmal soweit.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:14 Do 10.11.2011 | Autor: | M.Rex |
Hallo
Es gilt:
[mm] \vektor{u_{1}\\u_{2}\\u_{3}}=2\cdot\vektor{a_{1}\\a_{2}\\a_{3}}+3\cdot\vektor{b_{1}\\b_{2}\\b_{3}}=\vektor{2a_{1}+3b_{1}\\2a_{2}+3b_{2}\\2a_{3}+3b_{3}}
[/mm]
Und
[mm] \vektor{v_{1}\\v_{2}\\v_{3}}=3\cdot\vektor{a_{1}\\a_{2}\\a_{3}}+2\cdot\vektor{b_{1}\\b_{2}\\b_{3}}=\vektor{3a_{1}+2b_{1}\\3a_{2}+2b_{2}\\3a_{3}+2b_{3}}
[/mm]
Also gilt:
[mm] |\vec{u}|=\sqrt{(2a_{1}+3b_{1})^{2}+(2a_{2}+3b_{2})^{2}+(2a_{3}+3b_{3})^{2}}=\ldots
[/mm]
Und
[mm] \vec{u}\cdot\vec{v}=\vektor{2a_{1}+3b_{1}\\2a_{2}+3b_{2}\\2a_{3}+3b_{3}}\cdot\vektor{3a_{1}+2b_{1}\\3a_{2}+2b_{2}\\3a_{3}+2b_{3}}=(2a_{1}+3b_{1})(3a_{1}+2b_{1})+(2a_{2}+3b_{2})(3a_{2}+2b_{2})+(2a_{3}+3b_{3})(3a_{3}+2b_{3})=\ldots
[/mm]
Bis hierher sind lediglich die Rechenregeln für Vektoren angewandt worden.
Wenn du die Regeln für das Skalarprodukt nutzt, mach dir mal klar, was
[mm] \vec{x}\cdot(\vec{y}\pm\vec{z})=\vec{x}\cdot\vec{z}\pm\vec{y}\cdot\vec{z}
[/mm]
[mm] \vec{x}\cdot(\lambda\vec{y})=\lambda(\vec{x}\cdot\vec{y})=(\lambda\vec{x})\cdot\vec{y}
[/mm]
Berechne damit nun [mm] \vec{u}\cdot\vec{v}
[/mm]
Marius
|
|
|
|