www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - L'Hospital
L'Hospital < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L'Hospital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:14 Fr 03.09.2010
Autor: moerni

Hallo.

Ich habe eine Frage zu L'Hosptial.

Gegeben habe ich die Funktion D:[0,T] [mm] \to \mathbb{R} [/mm]

D(t)= [mm] \begin{cases} \frac{|u(t)-v(t)|}{t}, t \in (0,T], T>0 \\ 0 , t=0 \end{cases} [/mm]

Zu den Funktionen u(t), v(t) gibts noch ein paar Eigenschaften, die aber für meine Frage nicht so wichtig sind. Die Aufgabe ist nun zu zeigen, dass D stetig ist. Da reichts ja zu zeigen, dass D in 0 stetig ist. Da würde ich gerne L'Hospital anwenden. Aber anscheinend ist es so, dass ich hier:

[mm] lim_{t\to 0} \frac{|u(t)-v(t)|}{t} [/mm]

den L'Hospital nicht anwenden darf, aber hier schon:


[mm] lim_{t\to 0} \frac{u(t)-v(t)}{t} [/mm]

Warum?

Anschließend ist dann anscheinend die Begründung: da D ohne Betrag stetig in 0 ist, ist dann auch D mit Betrag stetig in 0. Kann mir das jemand vielleicht noch etwas erläutern?

Über eine Hilfe wäre ich sehr dankbar,
lg moerni



        
Bezug
L'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Fr 03.09.2010
Autor: Gonozal_IX

Huhu,

> Zu den Funktionen u(t), v(t) gibts noch ein paar
> Eigenschaften, die aber für meine Frage nicht so wichtig
> sind.

Da irrst du dich aber gewaltig.
Was sind denn die Voraussetzungen für L'Hospital?
Was weißt du über die Betragsfunktion und welche Eigenschaft für L'Hospital erfüllt diese nicht?
Denk da mal drüber nach, vielleicht kommst dann selbst drauf ;-)

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]