www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - LU-Zerlegung
LU-Zerlegung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LU-Zerlegung: Aufgabe
Status: (Frage) für Interessierte Status 
Datum: 18:51 Fr 30.12.2005
Autor: Elbi

Aufgabe
Es sei K ein Körper. Eine Permutationsmatrik [mm]K^(n \times n)[/mm] ist eine Matrix, die durch Permutation von Zeilen aus der Einheitsmatrix hervorgeht.
Es sei [mm]A \in K^(n \times n)[/mm]. Zeigen Sie, dass eine Permutationsmatrix P existiert, so dass PA eine LU-Zerlegung PA=LU besitzt, wobei L invertierbar ist.

Hallo ihr,

erstmal nochmal nachträglich sozuganen: Frohe Weihnachten
und im voraus: Guten Rutsch ins neue Jahr 2006.
Da denkt man, mensch jetzt haste Ferien...naja falsch gedacht, wir haben Hausaufgaben auf, wie gemein und dann noch welche wo man keinen Ansatz findet, also zumindest geht es mir so. Bei der Aufgabe da, habe ich wirklich keine Ahnung wie ich da anfangen kann. Hilfe!
Habt ihr eine Idee?
Vielen Dank im voraus,

LG

Elbi

        
Bezug
LU-Zerlegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:47 Di 03.01.2006
Autor: matux

Hallo Elbi!


Leider konnte Dir keiner hier mit Deinem Problem in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]