www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - LGS mit komplexen Zahlen
LGS mit komplexen Zahlen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS mit komplexen Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Mo 29.10.2007
Autor: Maschbauer

Aufgabe
A = [mm] \pmat{ 1 + i & 1 - i & 2 \\ 2 - 2i & -2 - 2i & 1 - i } [/mm] , [mm] \vec{b} [/mm] = [mm] \vektor{-3 \\ 3} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Schönen guten Tag,
ich soll dieses LGS mit Hilfe des Gauß-Algorithmums lösen. Allerdings wurden wir (meine Kommilitonen und ich) ins kalte Wasser geschmiessen. D.h. ich habe den Gauß-Algorithmus noch nie bei komplexen Zahlen angewandt [keineahnung] Nun meine Frage: Muss ich da irgendwas beachten und versuchen das i durch i² = -1 "rauszuschmeißen" ? Oder wie geht man an solch eine Aufgabe dran?
Da ich bis jetzt noch keinen vernünftigen Ansatz gefunden habe, wäre es toll wenn ihr mir einen geben könnt, so dass ich es erstmal selbst veruschen kann. Falls ich dann immer noch nicht weiter komme werdet ihr es schon merken ;-) Bis dahin
Gruß

        
Bezug
LGS mit komplexen Zahlen: Tipp
Status: (Antwort) fertig Status 
Datum: 16:36 Mo 29.10.2007
Autor: CatDog

Hi,
eigtl. kannst Du das i wie eine beliebige Variable behandeln und sobald sich in der Rechnung [mm] i^{2}, i^{3} [/mm] usw. ergibt kannst Du
[mm] i^{2} [/mm] durch -1 ersetzen. Das ist eigtl. alles
Gruss CatDog

Bezug
                
Bezug
LGS mit komplexen Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 Di 30.10.2007
Autor: Maschbauer

Hmm ich krieg das LGS aber einfach nich in Stufenform :( irgendwie will mir nich einfallen wie ich die zeilen erweitern muss, damit 2 - 2i = 0 wird. Brauche (leider) eure Hilfe!
Gruß

Bezug
                        
Bezug
LGS mit komplexen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 Di 30.10.2007
Autor: schachuzipus

Hallo Maschbauer,

wenn du's nicht siehst, leite doch her, wie du erweitern musst, damit du die $2-2i$ in der zweiten Zeile los wirst:

Das wievielfache von $1+i$ musst du zu $2-2i$ addieren, damit es 0 ergibt?

[mm] $(1+i)(a+bi)=-(2-2i)=-2+2i\Rightarrow....\Rightarrow [/mm] a+bi=2i$

Addiere also das $2i$ -fache der 1.Zeile zur 2.Zeile, dann sollte zumindest das $2-2i$ in der 2.Zeile verschwinden.

Habe aber nicht weiter gerechnet...

LG

schachuzipus

Bezug
                                
Bezug
LGS mit komplexen Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:41 Di 30.10.2007
Autor: Maschbauer

Ja jetzt ist mir alles klar :) Danke für den ausfürlichen Ansatz
Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]