www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - LGS in abhängigkeit von r
LGS in abhängigkeit von r < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS in abhängigkeit von r: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 Sa 03.11.2007
Autor: molekular

Aufgabe
bestimmen sie unter verwendung des gaußschen verfahrens die lösungsmenge des folgenden gleichungssystems in abhängigkeit von dem parameter $r [mm] \in \IR$ [/mm]

$4x-y=ry$
$2x+y=rx$

salute zusammen!

hab mich mal an dieser aufgabe probiert aber ich bin mir sehr unsicher obs so stimmt. ich bräuchte sie unbedingt zu montag...wäre schön, wenn sich ihr jemand annehmen könnte [anbet]

LGS(G)

$ 4x-y=ry $
$ 2x+y=rx $

habe die zweite gleichung $ [mm] \cdot(-2) [/mm] $ genommen, zur ersten addiert und nach $ x $ aufgelöst

somit: $ [mm] x=\bruch{ry}{(6-r)} [/mm] $

eingesetzt in die erste gleichung, wobei dann allerdings $y$ entfällt.
komme somit auf eine quadratische gleichung von $r$

[mm] $0=r^2-r-6$ [/mm] für [mm] $r_1=3$ [/mm] und [mm] $r_2=-2$ [/mm]

bedeutet das nun,dass G für [mm] $r_1_2$ $\IL=\left\{ (x,y):x=y\in \IR \right\} [/mm] $ hat und/oder was ist für $ [mm] r\ne r_1_2 [/mm] $ ähmm, hab ich mich total vertüdelt???



        
Bezug
LGS in abhängigkeit von r: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Sa 03.11.2007
Autor: schachuzipus

Hallo molekular,

Forme zunächst das LGS um:

[mm] $\vmat{ &4x & -&y&=&ry \\ &2x & +&y&=&rx }$ [/mm] zu

[mm] $\vmat{ &4x & -&(1+r)y&=0 \\ &(2-r)x & +&y&=0 }$ [/mm]

Nun kannst du das -4fache der 2.Zeile zum (2-r)fachen [mm] (r\neq [/mm] 2) der 1.Zeile addieren und bekommst nach einigen Umformungen

[mm] $\vmat{ && &(r-3)(r+2)y&=0 \\ &(2-r)x & +&y&=0 }$ [/mm]

Hier kannst du nun die nötigen Fallunterscheidungen bzgl. $r$ machen

1.Fall: [mm] $r\neq [/mm] 3, [mm] r\neq [/mm] -2$

2.Fall: $r=3$

3.Fall: $r=-2$

Nun bestimme mal für diese 3 Fälle die jeweilige Lösungsmenge...

Da wir für die Umformungen $r=2$ rausnehmen mussten, um die Lösungsmenge unverändert zu lassen, musst du diesen Fall am Schluss noch kurz untersuchen.

Setze dazu $r=2$ in das LGS ein...



LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]