www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - LGS für Verbindungsraum
LGS für Verbindungsraum < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS für Verbindungsraum: Tipp, Ideen Lösungshilfe alles
Status: (Frage) überfällig Status 
Datum: 21:14 So 03.02.2013
Autor: dany1995

Aufgabe
Bestimme ein lineares Gleichungssystem  für den Verbindunsraum X [mm] \vee [/mm] Y

X= [mm] \vektor{x_1 \\ x_2 \\ x_3} \in \IR^3 [/mm] | [mm] x_1 +2x_2 [/mm] =2,  [mm] 3x_1 [/mm] - [mm] x_2 +3x_3 [/mm] =-3
Y= [mm] {\vektor{x_1 \\ x_2 \\ x_3} \in \IR^3 | x_1 +2x_2 + x_3 =2 , x_1 +2x_2 - x_3 =2} [/mm]


Liebe Forumfreunde
ich muss ein lineares Gleichungssystem bestimmen für den Verbindunsraum X [mm] \vee [/mm] Y
mit
X= [mm] {\vektor{x_1 \\ x_2 \\ x_3} \in \IR^3 | x_1 +2x_2 =2, 3x_1 - x_2 +3x_3 =-3} [/mm]
Y= [mm] {\vektor{x_1 \\ x_2 \\ x_3} \in \IR^3 | x_1 +2x_2 + x_3 =2 , x_1 +2x_2 - x_3 =2} [/mm]

  Die Lösung habe ich schon, verstehe leider einen Schritt nicht



Es ist X [mm] \cap [/mm] Y [mm] ={(1/7*\vektor{-4\\9\\0})}\not= \emptyset [/mm]

T(X)= [mm] \IR* \vektor{-6\\ 3\\7} [/mm] ,

T(Y)= IR* [mm] \vektor{-2\\1\\0} [/mm]   das hier verstehe ich

=> [mm] X\vee [/mm] Y [mm] =1/7*\vektor{-4\\9\\0}+T(X)+T(Y) [/mm]    das ist auch ok

[mm] =1/7*\vektor{-4\\9\\0}+\IR*\vektor{0\\0\\1}+ \IR* \vektor{-2\\1\\0} [/mm]   warum verwendet man hier für T(x) jetzt diesen vektor [mm] \vektor{0\\0\\1} [/mm] und nicht T(X)= [mm] \vektor{-6\\3\\7} [/mm]


rest verstehe ich
[mm] =1/7*\vektor{-4\\9\\0}+ [/mm] (x [mm] \in\IR^3 [/mm] | (1 2 0) x^=0^)

[mm] ={\vektor{x_1\\x_2\\x_3}\in\IR^3 : x_1+2x_2=2} [/mm]

Ich wäre sehr dankbar, wenn mir jemand das erklähren könnte.
Danke im Voraus
Gruß Anna  
[mm] \fedoff [/mm]

        
Bezug
LGS für Verbindungsraum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Di 05.02.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]