www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - LGS
LGS < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:46 Mo 11.06.2012
Autor: math-science-history

Aufgabe
1. g)

|2/3w + 1/6z = 5/8|
|5w + z = 3|

Ich probiere das schon seit mehreren Stunden mit allen 3 Verfahren zu lösen, aber ich schaffs einfach nicht.

Ich kenn die Lösung bereits:
z = 1,688 , w = 1,359

Troztdem schaffs ich einfach nicht und irgendwie bekomm ich immer andere Ergebnisse raus. Kann jemand vielleicht Bitte schrittweise den Lösungsweg erklären?

Hier mein erster Lösungsweg:

|2/3w + 1/6z = 5/8| *(-6)
|5w + z = 3|

|-4w - z = -3,75| + Gleichung II
|5w + z = 3|

| -w = -3/4| :(-1) = w = 3/4
|5w + z = 3|

3,75 + z = 3  |-3,75
z= -3/4

Danke im Voraus math-science-history!

        
Bezug
LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Mo 11.06.2012
Autor: angela.h.b.


> 1. g)
>  
> |2/3w + 1/6z = 5/8|
>  |5w + z = 3|
>  Ich probiere das schon seit mehreren Stunden mit allen 3
> Verfahren zu lösen, aber ich schaffs einfach nicht.
>  
> Ich kenn die Lösung bereits:
>  z = 1,688 , w = 1,359

Hallo,

bzgl dieser Lösung habe ich ärgste Zweifel...

>  
> Troztdem schaffs ich einfach nicht und irgendwie bekomm ich
> immer andere Ergebnisse raus. Kann jemand vielleicht Bitte
> schrittweise den Lösungsweg erklären?
>  
> Hier mein erster Lösungsweg:
>  
> |2/3w + 1/6z = 5/8| *(-6)
>  |5w + z = 3|
>  
> |-4w - z = -3,75| + Gleichung II
>  |5w + z = 3|
>
> | [mm] \red{-}w [/mm] = -3/4|
>  |5w + z = 3|

Das rot markierte Minuszeichen ist falsch.
Rechne ab hier neu.
Das Prinzip Deiner rechnung war völlig richtig.

LG Angela

>  
> 3,75 + z = 3  |-3,75
>  z= -3/4
>  
> Danke im Voraus math-science-history!


Bezug
                
Bezug
LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:06 Mo 11.06.2012
Autor: math-science-history

Stimmt, damit habe ich L={( -3/4 | 6,75 )} raus.
Danke ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]