www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - LGS
LGS < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Do 11.09.2008
Autor: Zuggel

Aufgabe
Untersuchen Sie die Lösungen des LGS mit den Unbekannten x,y,z und w mit den in [mm] \IR [/mm] variierenden Paramtern [mm] \alpha [/mm] und [mm] \beta [/mm]

[mm] \alpha x+\beta [/mm] y-z=1
x+z=3
[mm] \alpha [/mm] x + [mm] \beta [/mm] y= [mm] \beta [/mm]
[mm] \alpha [/mm] z + [mm] \beta [/mm] w= [mm] \beta [/mm]

Hallo alle zusammen!

Also das ist eine Aufgabe welche isch gelöst habe, jedoch über das Ergebnis des Professors etwas unentschlossen bin.

Also zuerst bringe ich x in Ausdruck von z, x= 3-z

Eingesetzt in meine anderen 3 Gleichungen:

[mm] \beta*y+z*(-1-\alpha)=1-3*\alpha [/mm]
[mm] \beta*y-\alpha*z= \beta -3*\alpha [/mm]
[mm] \alpha [/mm] z + [mm] \beta [/mm] w = [mm] \beta [/mm]

Nun mit Gauss:

[mm] \beta [/mm] y + [mm] z*(-1-\alpha) [/mm] = [mm] 1-3*\alpha [/mm]
[mm] -\beta*y [/mm] + [mm] \alpha*z=3*\alpha [/mm] - [mm] \beta [/mm]
= -z = [mm] 1-\beta [/mm]

[mm] \alpha* [/mm] (-z = [mm] 1-\beta) [/mm]
[mm] \alpha [/mm] z + [mm] \beta [/mm] w = [mm] \beta [/mm]
= [mm] \beta [/mm] w = [mm] \alpha [/mm] - [mm] \beta*\alpha [/mm] + [mm] \beta [/mm]

Nun meine Lösung war:

[mm] \beta [/mm] w = [mm] \alpha [/mm] - [mm] \beta*(\alpha [/mm] + 1)

für [mm] \beta=0 [/mm] habe ich folgendes:

0 = [mm] \alpha [/mm]

Also habe ich keine Lösung für [mm] \alpha \not= [/mm] 0
Ich habe [mm] \infty^{1} [/mm] Lösungen für [mm] \beta [/mm] = 0 und [mm] \alpha [/mm] = 0
Und eine Lösung für [mm] \beta \not=0 (\exists! [/mm] := existiert eine Lösung, oder?)

Laut Lösung, hat das System aber mit [mm] \beta [/mm] = 0 und [mm] \alpha=0 [/mm] :  [mm] \infty^{2} [/mm]  Lösungen. Ich verstehe nicht wieso. Es müssten dann ja 2 Unbekannte durch einen Parameter ersetzt werden und damit das System gelöst werden. Aber hier ist doch nur der Fall wo wir 0*w=0 hatten.

Ich würde hier w=t mit t [mm] \in \IR [/mm] wählen und damit das System lösen, das ist aber nicht richtig. Wieso nicht?
Als Begründung wird angegeben, dass es 2 Paramter gibt. Aber wie gesagt, die Parameter [mm] \alpha [/mm] und [mm] \beta [/mm] spielen hier doch keine Rolle mehr, da sie bereits gewählt wurden (sonst wäre ich ja nicht auf die Lösung [mm] \infty [/mm] gekommen)

Dankeschön
lg
Zuggel

        
Bezug
LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Do 11.09.2008
Autor: Arralune

Erstmal die Randfrage: [mm]\exists![/mm] Bedeutet: Es existiert genau eine Lösung.

Ansonsten hat dein Professor Recht:
Wenn du [mm]\alpha = 0, \quad \beta = 0[/mm] in das Gleichungssystem einsetzt erhälst du:
[mm]-z=1[/mm]
[mm]x+z=3[/mm]
[mm]0=0[/mm]
[mm]0=0[/mm]
Also z = -1, x = 4. y und w können beliebig gewählt werden, da sie in den Gleichungen gar nicht mehr vorkommen.
Dein Fehler liegt darin, dass du dir nicht Gleichungen für alle Variablen aufgeschrieben hast, für y gilt ja nach deinem Gaussumformungsschritt:
[mm]\beta * y = 1 - 3 * \alpha + z (1 + \alpha)[/mm]
Ist [mm]\beta[/mm] nun aber 0, so ist y nicht durch diese Gleichung eindeutig bestimmt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]