www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - LGS
LGS < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS: bitte um überprüfung
Status: (Frage) beantwortet Status 
Datum: 20:36 Do 07.02.2008
Autor: pumpernickel

Aufgabe
Es sei L [mm] \subset \IR^{5} [/mm] der Unterraum der L¨osungen des folgenden linearen
Gleichungssystems [mm] \pmat{ 1 & 0 & 1 & 1 & 2 \\ 7 & 0 & 6 & 2 & 2 \\ 2 & 0 & 3 & 7 & 6 } \vec{x} [/mm] = 0
Man finde eine Basis eines Komplement¨arraumes von L [mm] \subset [/mm]  [mm] \IR^{5} [/mm]

  

bringe die matrix auf stufennormalform:
[mm] \pmat{ 0 & 0 & 0 & 0 & -10 \\ 0 & 0 & 1 & 5 & 12 \\ 1 & 0 & 0 & -4 & 0 } \vec{x} [/mm] = 0
kann sein ,dass das nicht ganz die stufennormalform ist(ist das schlimm in bezug auf mein ergebnis?)
dann nehme ich als basis [mm] L(\vektor{-10 \\ 12 \\ 0 } [/mm] =Im A
als die anzahl der linear unabhängigen Vektoren von A.

danke für eure aufmerksamkeit.

        
Bezug
LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:41 Do 07.02.2008
Autor: Sabah

Meine Meinung nach muss man diese LGS lösen

[mm]\pmat{ 1 & 0 & 1 & 1 & 2 &0\\ 7 & 0 & 6 & 2 & 2&0 \\ 2 & 0 & 3 & 7 & 6&0 } [/mm]


Bezug
        
Bezug
LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 10:15 Sa 09.02.2008
Autor: angela.h.b.


> Es sei L [mm]\subset \IR^{5}[/mm] der Unterraum der L¨osungen des
> folgenden linearen
>  Gleichungssystems [mm]\pmat{ 1 & 0 & 1 & 1 & 2 \\ 7 & 0 & 6 & 2 & 2 \\ 2 & 0 & 3 & 7 & 6 } \vec{x}[/mm]
> = 0
>  Man finde eine Basis eines Komplement¨arraumes von L
> [mm]\subset[/mm]  [mm]\IR^{5}[/mm]
>  
>
> bringe die matrix auf stufennormalform:
>  [mm]\pmat{ 0 & 0 & 0 & 0 & -10 \\ 0 & 0 & 1 & 5 & 12 \\ 1 & 0 & 0 & -4 & 0 } \vec{x}[/mm]
> = 0
>  kann sein ,dass das nicht ganz die stufennormalform
> ist(ist das schlimm in bezug auf mein ergebnis?)
>  dann nehme ich als basis [mm]L(\vektor{-10 \\ 12 \\ 0 }[/mm] =Im A
>  als die anzahl der linear unabhängigen Vektoren von A.

Hallo,

was Du hier treibst, ist mir mehr als schleierhaft.

Du hast hier ein homogenes LGS gegeben, dessen Lösungsraum  L heißen soll.

Suchen sollst Du nun einen Raum M (bzw. dessen Basis) mit der Eigenschaft L [mm] \oplus [/mm] M= [mm] \IR^5. [/mm]

Da dies die Aufgabenstellung ist, muß doch die Basis v. M dem [mm] \IR^5 [/mm] entstammen, und schon dies macht Deine "Lösung" absurd.

Die Vorgehensweise:

Bestimme zunächst eine Basis von L, diese ergänze zu einer Basis des [mm] \IR^5, [/mm] die ergänzenden Vektoren spannen den gesuchten Raum auf.

Die Bestimmung der Basis v. L ist die Bestimmung eienr Basis des Kerns der gegebenen Matrix, und dies wird Dir vermutlich am besten gelingen, wenn Du eine manierliche ZSF herstellst.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]