www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - L2-Konvergenz
L2-Konvergenz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L2-Konvergenz: Funktionenfolgen
Status: (Frage) beantwortet Status 
Datum: 17:00 Do 19.05.2011
Autor: beutelsbacher

Aufgabe
Hallo zusammen, kann mir jemand folgenden Sachverhalt begründen?

Sei [mm](\Phi_n )_{n \in \mathbb{N}}[/mm] eine Folge von Funktionen, die in der [mm] $L^1$-Norm [/mm] gegen eine Funktion $f$ konvergieren. Weiterhin seien [mm] $\Phi_n$ [/mm] und $f$ beschränkt.
Warum folgt hieraus die [mm] $L^2$-Konvergenz? [/mm]

Danke schonmal im Voraus an euch...





        
Bezug
L2-Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Do 19.05.2011
Autor: steppenhahn

Hallo!

Wenn [mm] $f_n, f:D\to\IR$ [/mm] mit [mm] $f_n \to [/mm] f$ in $L1$, gilt:

[mm] $\int_{D}|f_n(x) [/mm] - f(x)| dx [mm] \to [/mm] 0$

Damit:

[mm] $\int_{D}|f_n(x) [/mm] - [mm] f(x)|^2 [/mm] dx [mm] \le \int_{D}|f_n(x) [/mm] - f(x)|*C dx = [mm] C*\int_{D}|f_n(x) [/mm] - f(x)| dx [mm] \to [/mm] C*0 = 0$.

Die Abschätzung geht wegen der Beschränktheit von [mm] $f_n$ [/mm] und $f$.

Grüße,
Stefan

Bezug
                
Bezug
L2-Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:25 Fr 20.05.2011
Autor: beutelsbacher

Hi,
danke für die Antwort. War wesentlich einfacher als ich dachte. :-D
Manchmal ist man auch wie verbohrt.

VG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]