www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Kurze Frage Supr. Inf.
Kurze Frage Supr. Inf. < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurze Frage Supr. Inf.: Korrektur
Status: (Frage) überfällig Status 
Datum: 15:28 Sa 22.01.2011
Autor: SolRakt

Hallo,

Da ich bald die Arbeit schreibe, möchte ich bei kleineren Sachen nochmal nachfragen. Und zwar geht es hierbei generell ums Vorgehen bzg. Supremum und Infimum.

Ich hab mal diese Aufgabe hier gefunden:

M := { [mm] \bruch{1}{x} [/mm] - [mm] \bruch{1}{y} [/mm] | x,y [mm] \in \IR, [/mm] x,y [mm] \ge [/mm] 1}

Wenn ich davon jetzt Supr. Inf. Max. und Min. bestimmen möchte, kann ich das dann generell wie folgt machen (?):

Also, erstmal die Definition von Supremum, etwa S:

(1) S ist obere Schranke.
(2) [mm] \forall \varepsilon [/mm] > 0 [mm] \exists [/mm] x,y [mm] \in \IR: [/mm] S- [mm] \varepsilon [/mm] < x,y

So, ich hab erstmal abgeschätzt, also:

[mm] \bruch{1}{x} [/mm] - [mm] \bruch{1}{y} [/mm] < [mm] \bruch{1}{x} [/mm]

Vermutung ist: S ist 1

Also kurz beweisen, dass 1 obere Schranke ist:

[mm] \bruch{1}{x} \le [/mm] 1
1 [mm] \le [/mm] x

Aber das entspricht der Voraussetzung x [mm] \ge [/mm] 1 und somit ist S o.S.

zu (2). Kann man das IMMER über einen Widerspruchsbeweis machen? Salopp formuliert lass ich das [mm] \varepsilon [/mm] einfach weg, also

S < [mm] \bruch{1}{x} [/mm] - [mm] \bruch{1}{y} [/mm]

Geht das generell?

Und wie kann ich jetzt weitermachen???



        
Bezug
Kurze Frage Supr. Inf.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 Mo 24.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]