www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Kurvenlänge
Kurvenlänge < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenlänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:39 Di 07.12.2010
Autor: jessy1985

Hallo kann mir vielleicht jemand sagen wie ich mit den beiden folgenden Punkten die Länge bestimmen kann. Habe da absolut keine Idee.

Berechnen Sie für die durch die Parameterdarstellung
[mm] \vec{r}(t)=\vektor{a cos (t) \\ a sin (t)\\bt}, 0\le [/mm] t [mm] \le 2\pi [/mm] gegebene Spirale die Länge der Kurve zwischen den Punkten
[mm] P_1=\vec{r}(t=0)=(a,0,0) [/mm] und [mm] P_2=\vec{r}(t=2\pi)=(a,0,2\pi [/mm] b)

Danke für Eure Hilfe.
Liebe Grüsse Jessy

        
Bezug
Kurvenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Di 07.12.2010
Autor: schachuzipus

Hallo Jessy,

> Hallo kann mir vielleicht jemand sagen wie ich mit den
> beiden folgenden Punkten die Länge bestimmen kann. Habe da
> absolut keine Idee.
>
> Berechnen Sie für die durch die Parameterdarstellung
> [mm]\vec{r}(t)=\vektor{a cos (t) \\ a sin (t)\\ bt}, 0\le[/mm] t [mm]\le 2\pi[/mm]
> gegebene Spirale die Länge der Kurve zwischen den Punkten
> [mm]P_1=\vec{r}(t=0)=(a,0,0)[/mm] und [mm]P_2=\vec{r}(t=2\pi)=(a,0,2\pi[/mm] b)

Na, du sollst die Bogenlänge berechnen, die Grenzen des zu berechnenden Integrals sind ja angegeben: untere: [mm]t=0[/mm], obere [mm]t=2\pi[/mm]

Wie lautet die Formel für die Bogenlänge?

Nachschlagen!

>
> Danke für Eure Hilfe.
> Liebe Grüsse Jessy

Gruß

schachuzipus


Bezug
                
Bezug
Kurvenlänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 Di 07.12.2010
Autor: jessy1985

So habe die Formel gefunden.
[mm] \integral_{0}^{2\pi} {\wurzel {(\bruch{dx(t)}{dt})^2+(\bruch{dy(t)}{dt})^2+(\bruch{dz(t)}{dt})^2{}} dt} [/mm]
Also muss ich erstmal x,y und z von [mm] \vec{r}(t) [/mm] ableiten oder?
Liebe Grüsse Jessy

Bezug
                        
Bezug
Kurvenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Di 07.12.2010
Autor: MathePower

Hallo jessy1985,

> So habe die Formel gefunden.
>  [mm]\integral_{0}^{2\pi} {\wurzel {(\bruch{dx(t)}{dt})^2+(\bruch{dy(t)}{dt})^2+(\bruch{dz(t)}{dt})^2{}} dt}[/mm]
>  
> Also muss ich erstmal x,y und z von [mm]\vec{r}(t)[/mm] ableiten
> oder?


Ja.


>  Liebe Grüsse Jessy



Gruss
MathePower

Bezug
                                
Bezug
Kurvenlänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:51 Di 07.12.2010
Autor: jessy1985

Ok danke. Also ergibt sich [mm] \bruch{d\vec{r}}{dt}= \vektor{-asin(t) \\ acos(t)\\ t} [/mm]
Ist das richtig?
Liebe Grüsse jessy

Bezug
                                        
Bezug
Kurvenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Di 07.12.2010
Autor: schachuzipus

Hallo nochmal,


> Ok danke. Also ergibt sich [mm]\bruch{d\vec{r}}{dt}= \vektor{-asin(t) \\ acos(t)\\ t}[/mm]
>  
> Ist das richtig?

Fast, die Ableitung der 3. Komponente solltest du nochmal prüfen ...

>  Liebe Grüsse jessy

Zurück [sunny]

schachuzipus


Bezug
                                                
Bezug
Kurvenlänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Di 07.12.2010
Autor: jessy1985

Danke. Das müsste b sein.Das setze ich nun einfach in die Formel ein und erhalte: [mm] \wurzel{a^2sin^2 t + a^2 cos^2 t +b^2}= \wurzel{a^2+b^2} [/mm]
Liege ich da falsch?
Liebe Grüsse Jessy

Bezug
                                                        
Bezug
Kurvenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Di 07.12.2010
Autor: MathePower

Hallo jessy1985,

> Danke. Das müsste b sein.Das setze ich nun einfach in die
> Formel ein und erhalte: [mm]\wurzel{a^2sin^2 t + a^2 cos^2 t +b^2}= \wurzel{a^2+b^2}[/mm]
>  
> Liege ich da falsch?


Da liegst Du goldrichtig.


>  Liebe Grüsse Jessy


Gruss
MathePower

Bezug
                                                                
Bezug
Kurvenlänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Di 07.12.2010
Autor: jessy1985

Super danke! :)
Das ist aber eine Konstante die vor dem Integral stehen kann oder? Somit würde nach dem Integral doch nur 1dt stehen und das wäre mit den Grenzen eingesetzt 2 [mm] \pi [/mm] - 0. Und insgesamt wäre die Länge [mm] \wurzel{a^2+b^2} 2\pi [/mm]
Liebe Grüsse

Bezug
                                                                        
Bezug
Kurvenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Di 07.12.2010
Autor: MathePower

Hallo jessy1985,

> Super danke! :)
>  Das ist aber eine Konstante die vor dem Integral stehen
> kann oder? Somit würde nach dem Integral doch nur 1dt


Ja, das ist richtig.


> stehen und das wäre mit den Grenzen eingesetzt 2 [mm]\pi[/mm] - 0.
> Und insgesamt wäre die Länge [mm]\wurzel{a^2+b^2} 2\pi[/mm]


Auch das ist richtig. [ok]


>  Liebe
> Grüsse


Gruss
MathePower

Bezug
                                                                                
Bezug
Kurvenlänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:30 Di 07.12.2010
Autor: jessy1985

Danke für eure Hilfe.
So weit so gut aber warum wurden die Werte der Punkte für t=0 und [mm] t=2\pi [/mm] angegeben. Die Punkte waren für das Lösen der Aufgabe ja nicht wirklich von Bedeutung.
Liebe Grüsse

Bezug
                                                                                        
Bezug
Kurvenlänge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Di 07.12.2010
Autor: MathePower

Hallo jessy1985,

> Danke für eure Hilfe.
>  So weit so gut aber warum wurden die Werte der Punkte für
> t=0 und [mm]t=2\pi[/mm] angegeben. Die Punkte waren für das Lösen
> der Aufgabe ja nicht wirklich von Bedeutung.


Ja.


>  Liebe Grüsse


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]