Kurvenintegrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:50 Sa 20.04.2013 | Autor: | Feli_na |
Hallo! Wir machen grade Kurvenintegrale und so weit funktioniert auch alles ganz gut, aber jetzt scheitere ich grade an einer Teilaufgabe.
http://www.math.uni-konstanz.de/numerik/personen/luik/mathchem1/Blatt15.pdf
Auf dem Übungsblatt die Aufgabe 58 c und dann direkt das erste Integral: wie komme ich da auf die Parametrisierung von [mm] C_{3}?
[/mm]
Danke für jede Hilfe :)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:31 Sa 20.04.2013 | Autor: | Infinit |
Hallo,
wie wäre es denn mit einer Abhängigkeit der x-Komponente in der Form
[mm] x(t) = 2- t [/mm]
wobei t zwischen 0 und 2 läuft.
Die y-Komponente ist identisch Null.
Viele Grüße,
Infinit
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:40 So 21.04.2013 | Autor: | Feli_na |
Hallo,
Ja so hätte ich das auch gemacht, weil wenn man für die Gerade eine Gleichung aufstellen würde, wäre es ja [mm] \vec{a}=\vektor{2 \\ 0}+t\vektor{-1 \\ 0} [/mm] oder?
Aber in den Lösungen haben die dann als Parametrisierung r(t)=(t,0) und [mm] 0\le [/mm] t [mm] \ge2
[/mm]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:46 So 21.04.2013 | Autor: | M.Rex |
> Hallo,
> Ja so hätte ich das auch gemacht, weil wenn man für die
> Gerade eine Gleichung aufstellen würde, wäre es ja
> [mm]\vec{a}=\vektor{2 \\ 0}+t\vektor{-1 \\ 0}[/mm] oder?
> Aber in den Lösungen haben die dann als Parametrisierung
> r(t)=(t,0) und [mm]0\le[/mm] t [mm]\ge2[/mm]
Deine Lösung ist genauso korrekt, du hast als Startpunkt den Punkt P(2|0) genommen, und von dort aus entlang des Vektors [mm] {-1\choose0} [/mm] zum Ursprung O gelaufen, in der Musterlösung gehen sie von O(0|0) aus, und dann entlang des Vektors [mm] {1\choose0} [/mm] zum Punkt P.
Der Unterschied ist die "Laufrichtung" des Weges.
Marius
|
|
|
|