www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Kurvenintegral im Komplexen
Kurvenintegral im Komplexen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral im Komplexen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:19 Do 11.02.2010
Autor: Pidgin

Aufgabe
Berechnen Sie das Integral [mm] \int\limits_{\gamma} \frac{dz}{(z-\alpha)(z-\beta)} [/mm] über den Kreis [mm] \gamma [/mm] mit  |z|=1 und [mm] |\alpha|\neq1, |\beta|\neq [/mm] 1. Berücksichtige die folgenden Fälle: i) [mm] \alpha [/mm] = [mm] \beta, [/mm] ii) 1 < [mm] |\alpha|,|\beta|; [/mm] iii) [mm] \alpha \neq \beta, |\alpha|, |\beta| [/mm] <1; iv) [mm] |\alpha|<1<|\beta|. [/mm] (Die Fälle i) und ii) sind leicht. Verwende Partialbruchzerlegung in Fällen iii) und iv).

Frage 1: Ich weiß irgendwie nicht was rechnerisch für ein Unterschied zwischen Fall iii) und iv) besteht. Ich habe das Integral mit Partialbruchzerlung gelöst und habe an keiner Stelle erkannt, warum man diese zwei Fälle unterscheiden sollte.

Frage 2: Ich habe leider keine Ahnung wie ich die Integrale i) und ii) lösen soll. Außerdem sehe ich wieder nicht warum man diese zwei Fälle unterscheiden sollte. Kann ich hier irgendwie den Cauchy Integralsatz anwenden?

Danke für eure Hilfe. Wenn ihr Details zur Partialbruchzerlegung aus Frage 1 braucht, kann ich das bei Bedarf nachliefern.

        
Bezug
Kurvenintegral im Komplexen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:45 Do 11.02.2010
Autor: fred97


> Berechnen Sie das Integral [mm]\int\limits_{\gamma} \frac{dz}{(z-\alpha)(z-\beta)}[/mm]
> über den Kreis [mm]\gamma[/mm] mit  |z|=1 und [mm]|\alpha|\neq1, |\beta|\neq[/mm]
> 1. Berücksichtige die folgenden Fälle: i) [mm]\alpha[/mm] = [mm]\beta,[/mm]
> ii) 1 < [mm]|\alpha|,|\beta|;[/mm] iii) [mm]\alpha \neq \beta, |\alpha|, |\beta|[/mm]
> <1; iv) [mm]|\alpha|<1<|\beta|.[/mm] (Die Fälle i) und ii) sind
> leicht. Verwende Partialbruchzerlegung in Fällen iii) und
> iv).
>  Frage 1: Ich weiß irgendwie nicht was rechnerisch für
> ein Unterschied zwischen Fall iii) und iv) besteht. Ich
> habe das Integral mit Partialbruchzerlung gelöst und habe
> an keiner Stelle erkannt, warum man diese zwei Fälle
> unterscheiden sollte.


Dan zeig doch mal Deine Rechnungen !!!



>  
> Frage 2: Ich habe leider keine Ahnung wie ich die Integrale
> i) und ii) lösen soll. Außerdem sehe ich wieder nicht
> warum man diese zwei Fälle unterscheiden sollte. Kann ich
> hier irgendwie den Cauchy Integralsatz anwenden?


Zu i):  hier integrierst Du über die Funktion $z [mm] \to \bruch{1}{(z-\alpha)^2}$ [/mm]   ($z [mm] \ne \alpha$). [/mm] Diese Funktion besitzt eine Stammfunktion, also ist das Integral = ???

Zu ii): Sei $f(z) = [mm] \bruch{1}{(z-\alpha)(z-\beta)}$. [/mm] Es gibt ein r>1, so dass f auf

            [mm] $G:=\{z \in \IC: |z|
holomorph ist. Der Integrationsweg [mm] \gamma [/mm] liegt im Gebiet G, also ist das Integral = ???

FRED


>  
> Danke für eure Hilfe. Wenn ihr Details zur
> Partialbruchzerlegung aus Frage 1 braucht, kann ich das bei
> Bedarf nachliefern.


Bezug
                
Bezug
Kurvenintegral im Komplexen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 07:17 Do 11.02.2010
Autor: Pidgin


>  >  Frage 1: Ich weiß irgendwie nicht was rechnerisch für
> > ein Unterschied zwischen Fall iii) und iv) besteht. Ich
> > habe das Integral mit Partialbruchzerlung gelöst und habe
> > an keiner Stelle erkannt, warum man diese zwei Fälle
> > unterscheiden sollte.
>  
>
> Dan zeig doch mal Deine Rechnungen !!!

iii) [mm] \int\limits_{\gamma} \frac{dz}{(z-\alpha)(z-\beta)} [/mm] = [mm] \int\limits_0^{2\pi} \frac{ie^{it}}{(e^{it}-\alpha)(e^{it}-\beta)} [/mm] dt = [mm] \int\limits_0^{2\pi} \frac{B}{(e^{it}-\alpha)} [/mm] + [mm] \frac{A}{e^{it}-\beta}dt [/mm]

Partialbruchzerlegung:
[mm] (e^{it}-\alpha)A [/mm] + [mm] B(e^{it}-\beta)= ie^{it} [/mm]

A+B=i; [mm] \Rightarrow [/mm] B = i-A   (1)
[mm] A\alpha [/mm] + [mm] B\beta [/mm] = 0 (2)
[mm] \Rightarrow [/mm] A = [mm] \frac{i\beta}{\beta - \alpha}; [/mm] B = [mm] \frac{i\alpha}{\alpha - \beta} [/mm]

[mm] \frac{1}{\alpha -\beta} \int\limits_0^{2\pi} \frac{i\alpha}{e^{it}-\alpha} [/mm] dt + [mm] \frac{1}{\beta - \alpha} \int\limits_0^{2\pi} \frac{i\beta}{e^{it}-\beta} [/mm] dt = [mm] \frac{1}{\alpha - \beta}\cdot (-2i\pi) [/mm] - [mm] \frac{2i\pi}{\beta -\alpha} [/mm] = 0
In meiner Rechnung sehe ich jetzt keinen Schritt der für Fall iv) nicht gehen würde. Sind dann Fall iii) und Fall iv) gleich Null?

> >  

> > Frage 2: Ich habe leider keine Ahnung wie ich die Integrale
> > i) und ii) lösen soll. Außerdem sehe ich wieder nicht
> > warum man diese zwei Fälle unterscheiden sollte. Kann ich
> > hier irgendwie den Cauchy Integralsatz anwenden?
>  
>
> Zu i):  hier integrierst Du über die Funktion [mm]z \to \bruch{1}{(z-\alpha)^2}[/mm]
>   ([mm]z \ne \alpha[/mm]). Diese Funktion besitzt eine
> Stammfunktion, also ist das Integral = ???

Ich sehe gerade die Stammfunktion nicht. Kannst du mir weiterhelfen?

>  
> Zu ii): Sei [mm]f(z) = \bruch{1}{(z-\alpha)(z-\beta)}[/mm]. Es gibt
> ein r>1, so dass f auf
>  
> [mm]G:=\{z \in \IC: |z|
>  
> holomorph ist. Der Integrationsweg [mm]\gamma[/mm] liegt im Gebiet
> G, also ist das Integral = ???
>  

Unter diesen Voraussetzungen ist das Integral über die geschlossene Kurve gleich Null nehme ich an. Ist deine Rechnung nicht auf Fall iii) bezogen, da der Aufgabensteller in Fall ii) [mm] \alpha [/mm] = [mm] \beta [/mm] glaube ich  vergessen hat. Sonst wären ja ii) und iii) gleich.
Dann stellt sich mir die Frage was der Unterschied zwischen der Rechnung in Fall i) und ii) sein soll.
Ich hoffe ich stifte nicht noch mehr Verwirrung.

Danke für eure Hilfe.


Bezug
                        
Bezug
Kurvenintegral im Komplexen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:47 Do 11.02.2010
Autor: SEcki


> Partialbruchzerlegung:

Durch die kämpf ich mich jetzt nicht, aber dusolltest das mit den einfachsten Veriablen machen, so zB [m]\bruch{A}{z-a}+\bruch{B}{z-b}=\bruch{1}{(z-a)(z-b)}[/m] als leichteste Variante ...

> > Zu i):  hier integrierst Du über die Funktion [mm]z \to \bruch{1}{(z-\alpha)^2}[/mm]
> >   ([mm]z \ne \alpha[/mm]). Diese Funktion besitzt eine

> > Stammfunktion, also ist das Integral = ???
>  
> Ich sehe gerade die Stammfunktion nicht. Kannst du mir
> weiterhelfen?

Leite mal [m]g(z)=1/z[/m] ab.

> Unter diesen Voraussetzungen ist das Integral über die
> geschlossene Kurve gleich Null nehme ich an.

Nimmst du an?

> Ist deine
> Rechnung nicht auf Fall iii) bezogen, da der
> Aufgabensteller in Fall ii) [mm]\alpha[/mm] = [mm]\beta[/mm] glaube ich  
> vergessen hat.

Wieso vergessen? Das wird in i.) erschlagen und ist auch völlig egal.

> Sonst wären ja ii) und iii) gleich.

??? Kommt jeweils 0 raus, ja.

>  Dann stellt sich mir die Frage was der Unterschied
> zwischen der Rechnung in Fall i) und ii) sein soll.

Das bei ii.) die beiden Nullstellen nicht gleich sein müssen?

SEcki

Bezug
                                
Bezug
Kurvenintegral im Komplexen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:26 Do 11.02.2010
Autor: Pidgin


> > Ich sehe gerade die Stammfunktion nicht. Kannst du mir
> > weiterhelfen?
>  
> Leite mal [m]g(z)=1/z[/m] ab.

Mir ist schon klar dass das die Stammfunktion ist, habe aber trotzdem folgendes Problem. Ich muss ja einmal um den Einheitskreis integrieren, deshalb dachte ich man muss das Integral erstmal in Polarkoordinaten parametrisieren:

[mm] \int\limits_{|z|=1} \frac{1}{(z-\alpha)^2} [/mm] dz = [mm] \int\limits_0^{2\pi} \frac{ie^{it}}{(e^{it}-\alpha)^2}dt [/mm]  Wie komm ich dann von diesem Punkt aus weiter?

>  
> > Unter diesen Voraussetzungen ist das Integral über die
> > geschlossene Kurve gleich Null nehme ich an.
>  
> Nimmst du an?

Nehme nicht ich an, sondern das behauptet der liebe Herr Cauchy mit seinem Integralsatz;-)

>  
> > Ist deine
> > Rechnung nicht auf Fall iii) bezogen, da der
> > Aufgabensteller in Fall ii) [mm]\alpha[/mm] = [mm]\beta[/mm] glaube ich  
> > vergessen hat.
>  
> Wieso vergessen? Das wird in i.) erschlagen und ist auch
> völlig egal.
>  
> > Sonst wären ja ii) und iii) gleich.
>  
> ??? Kommt jeweils 0 raus, ja.
>  
> >  Dann stellt sich mir die Frage was der Unterschied

> > zwischen der Rechnung in Fall i) und ii) sein soll.
>  
> Das bei ii.) die beiden Nullstellen nicht gleich sein
> müssen?
>  

Ok jetzt formuliere ich meine Frage zu dem Unterschied der verschiedenen Fälle hoffentlich nochmal klarer.
Fall i) [mm] \alpha [/mm] = [mm] \beta [/mm]
Fall ii) [mm] |\alpha|,|\beta| [/mm] < 1  (Nehme an das folgende Korrektur notwendig ist: [mm] \alpha [/mm] = [mm] \beta) [/mm]
Fall iii) [mm] \alpha \neq \beta; |\alpha|, |\beta| [/mm] <1
Fall iv) [mm] |\alpha| [/mm] < 1 < [mm] |\beta| [/mm]

In Fall iii) und iv) wird mir Partialbruchzerlegung empfohlen. Ich habe aber keine Ahnung warum ich diese zwei Fälle getrennt betrachten muss, da bei der Partialbruchzerlegung keine Probleme auftreten.

Ok ich glaube ich hab jetzt Fall ii) gelöst:
Ich habe mir als [mm] \gamma(t) [/mm] = [mm] \alpha [/mm] + [mm] e^{i*t} [/mm] definiert.
Dann sieht mein Integral wie folgt aus:
[mm] \int\limits_0^{2\pi} \frac{ie^{it}}{e^{2it}} [/mm] dt = ... = 0
Diese Methode kann ich in Fall i) aber glaube ich nicht anwenden, da ja [mm] |\alpha|>1 [/mm] gelten könnte und es dann nicht in meinem Integrationsgebiet liegt.

Jetzt bräuchte ich noch einen Tipp für Fall i) und warum Fall iii) und Fall iv) verschieden sind?



Bezug
                                        
Bezug
Kurvenintegral im Komplexen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 Do 11.02.2010
Autor: felixf

Hallo!

> > > Ich sehe gerade die Stammfunktion nicht. Kannst du mir
> > > weiterhelfen?
>  >  
> > Leite mal [m]g(z)=1/z[/m] ab.
>  
> Mir ist schon klar dass das die Stammfunktion ist, habe
> aber trotzdem folgendes Problem. Ich muss ja einmal um den
> Einheitskreis integrieren, deshalb dachte ich man muss das
> Integral erstmal in Polarkoordinaten parametrisieren:
>  
> [mm]\int\limits_{|z|=1} \frac{1}{(z-\alpha)^2}[/mm] dz =
> [mm]\int\limits_0^{2\pi} \frac{ie^{it}}{(e^{it}-\alpha)^2}dt[/mm]  
> Wie komm ich dann von diesem Punkt aus weiter?

Wenn [mm] $\gamma(t) [/mm] = [mm] e^{i t}$ [/mm] ist, dann ist dies [mm] $-\int_0^{2 \pi} g'(\gamma(t)) \gamma'(t) [/mm] dt$. Nach der Kettenregel also [mm] $-\int_0^{2 \pi} [/mm] (g [mm] \circ \gamma)' [/mm] dt$. Und dies ist eben $-((g [mm] \circ \gamma)(2 \pi) [/mm] - (g [mm] \circ \gamma)(0))$. [/mm]

> Ok jetzt formuliere ich meine Frage zu dem Unterschied der
> verschiedenen Fälle hoffentlich nochmal klarer.
>  Fall i) [mm]\alpha[/mm] = [mm]\beta[/mm]
>  Fall ii) [mm]|\alpha|,|\beta|[/mm] < 1  (Nehme an das folgende
> Korrektur notwendig ist: [mm]\alpha[/mm] = [mm]\beta)[/mm]

Nein, hier kann [mm] $\alpha \neq \beta$ [/mm] sein. Allerdings gilt [mm] $|\alpha|, |\beta| [/mm] > 1$ und nicht $< 1$! Ansonsten hast du ja Fall iii)!

>  Fall iii) [mm]\alpha \neq \beta; |\alpha|, |\beta|[/mm] <1
>  Fall iv) [mm]|\alpha|[/mm] < 1 < [mm]|\beta|[/mm]
>  
> In Fall iii) und iv) wird mir Partialbruchzerlegung
> empfohlen. Ich habe aber keine Ahnung warum ich diese zwei
> Fälle getrennt betrachten muss, da bei der
> Partialbruchzerlegung keine Probleme auftreten.

Du kannst dann die beiden Brueche einzelnd integrieren. Bei iv) ist das eine Integral nach Cauchy 0. Das andere Integral, und die beiden bei iii), loest du aehnlich wie [mm] $\int_{|z| = 1} \frac{1}{z} [/mm] dz$. (Weisst du wie man das loest?)

> Ok ich glaube ich hab jetzt Fall ii) gelöst:
>  Ich habe mir als [mm]\gamma(t)[/mm] = [mm]\alpha[/mm] + [mm]e^{i*t}[/mm] definiert.

Wieso?! Es soll doch [mm] $\gamma(t) [/mm] = 0 + [mm] e^{i t}$ [/mm] sein!

>  Dann sieht mein Integral wie folgt aus:
>  [mm]\int\limits_0^{2\pi} \frac{ie^{it}}{e^{2it}}[/mm] dt = ... = 0

Nein. (Insbesondere nicht weil [mm] $\alpha \neq \beta$ [/mm] ist.)

Verwende bei (ii) einfach den Cauchyschen Integralsatz. Die Funktion ist doch holomorph auf einer Umgebung des Einheitskreises.

> Jetzt bräuchte ich noch einen Tipp für Fall i)

Siehe oben.

> und warum Fall iii) und Fall iv) verschieden sind?

Weil du bei einem dich mit zwei Bruechen herumschlagen musst, beim anderen nur mit einem (der andere wird vom Integralsatz erschlagen).

LG Felix


Bezug
                        
Bezug
Kurvenintegral im Komplexen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:20 Sa 13.02.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Kurvenintegral im Komplexen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Do 11.02.2010
Autor: fred97

Zur Klärung: im Folgenden sei [mm] $|z_0| \ne [/mm] 1 und m und n seien ganze Zahlen

1. Sei $I = [mm] \integral_{\gamma}^{}{\bruch{dz}{(z-z_0)^n}}$ [/mm]

Fall 1: n [mm] \ne [/mm] 1. Dann besitzt z [mm] \to \bruch{1}{(z-z_0)^n} [/mm] eine Stammfunktion und somit ist I =0

Fall 2: n= 1.

Fall2.1: [mm] $|z_0| [/mm] > 1$. Der Cauchysche Integralsatz liefert: I =0.

Fall2.1: [mm] $|z_0| [/mm] < 1$. Dann ist I das Integral der Funktionentheorie          und wie man sofort nachrechnet ist $I = 2 [mm] \pi [/mm] i$




FRED

        


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]