www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Kurvenintegral Vektorfeld
Kurvenintegral Vektorfeld < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral Vektorfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Mi 11.01.2012
Autor: thadod

Hallo zusammen...

Ich habe mal eine Frage. Es geht um die folgende Aufgabe:

Kontruiere ein Vektorfeld [mm] \vec{F}: \IR^2 \to \IR^2 [/mm] mit [mm] \integral_{\vec{x}}\vec{F}\vec{ds}=\pi, [/mm] wobei [mm] \vec{x} [/mm] die Gerade von (0,0) nach (1,1) ist.

Entscheidend ist ja hierfür, dass mein Kurvenintegral [mm] \pi [/mm] ergibt. Ich habe nun ein wenig rumprobiert und komme aber noch nicht so recht zu einer vernünftigen Lösung.

Gibt es nun eventuell einen Trick, mit dem ich das ganze von hinten aufarbeiten kann   ???

Ich hatte an folgendes gedacht:

[mm] \integral_0^{\pi}1dt=\pi [/mm]

Damit weiß ich ja schonma wie mein Integral aussehen muss.

Andernfalls wäre das ja eine Intervallgrenze von 0 [mm] \le [/mm] t [mm] \le \pi [/mm] und in meinem Fall muss ja, wegen der Aufgabenstellung 0 [mm] \le [/mm] t [mm] \le [/mm] 1 oder   ???

Irgendwie weiß ich grad nicht so ganz weiter und hoffe ihr könnt mir einen Denkanstoss geben...

mfg thadod

        
Bezug
Kurvenintegral Vektorfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Mi 11.01.2012
Autor: fred97

Nimm [mm] \vec{x(t)}=(t,t)^T [/mm]  für t [mm] \in [/mm] [0,1]

FRED

Bezug
                
Bezug
Kurvenintegral Vektorfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 Mi 11.01.2012
Autor: thadod

Hallo und Danke...

Ich habe nun folgendes gemacht:

ich wähle das Vektorfeld [mm] \vec{F}=\vektor{\bruch{\pi}{2} \\ \bruch{\pi}{2}} [/mm]

ich wähle deine parametrisierung mit [mm] \vec{x}(t)=\vektor{t \\ t} [/mm] und erhalte somit die Ableitung [mm] \vec{x}'(t)=\vektor{1 \\ 1} [/mm] und zwar für 0 [mm] \le [/mm] t [mm] \le [/mm] 1

Es ergibt sich weiterhin [mm] \vec{F}(t,t)=\vektor{\bruch{\pi}{2} \\ \bruch{\pi}{2}} [/mm]

und somit das Kurvenintegral [mm] \integral_0^1{ \left\langle \vektor{\bruch{\pi}{2} \\ \bruch{\pi}{2}},\vektor{1 \\ 1} \right\rangle}dt=\integral_0^{1}{\bruch{\pi}{2}+\bruch{\pi}{2}}dt=t\bruch{\pi}{2}+t\bruch{\pi}{2} [/mm] und in den Grenzen von 0 bis 1 ergibt das ja [mm] \pi [/mm]

Darf ich denn [mm] \vec{F}=\vektor{\bruch{\pi}{2} \\ \bruch{\pi}{2}} [/mm] überhaupt durch [mm] \vec{x}(t)=\vektor{1 \\ 1} [/mm] parametrisieren?

mfg thadod

Bezug
                        
Bezug
Kurvenintegral Vektorfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Mi 11.01.2012
Autor: fred97

Passt alles

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]