www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Kurvenintegral
Kurvenintegral < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral: Hilfestellung
Status: (Frage) für Interessierte Status 
Datum: 11:36 Do 17.03.2011
Autor: kopfl

Aufgabe
[mm] K_1, K_2 [/mm] sind die in nebenstehender Abbildung gargestellten Kurven mit Anfangswert (-1,0) und Endpunkt (1,1).

Gegeben sei das Vektorfeld [mm]\vec v(x,y)= \vektor{e^{pi*x} *cos(\pi*y) \\ -e^{pi*x} *sin(\pi*y)}[/mm]

a) Ist [mm]\vec v(x,y)[/mm] konservativ?
b) Berechnen Sie die Integrale [mm]\integral_{K_1}^{}{\vec v d \vec s}[/mm] und [mm]\integral_{K_2}^{}{\vec v d \vec s}[/mm]

[Dateianhang nicht öffentlich]


Aufgabenteil a) ist beantwortet. Feld ist konservativ.

Mein Ansatz für [mm] K_1 [/mm] ist der folgende:

[mm] \integral_{K_1}^{}{\vec v d \vec s} = \integral_{VK}^{}{\vec v d \vec s} + \integral_{G}^{}{\vec v d \vec s}[/mm]

VK = Viertelkurve, G = Gerade

Für die Viertelkurve:
[mm]d \vec s = rd\phi \vec e\phi[/mm]

[mm]V_\phi= - sin\phi Vx + cos\phi Vy[/mm]

Nach einsetzen und ausklammern.

[mm]V_\phi=-e^{\pi*r*cos\phi}*(sin\phi*cos(\pi*r*sin\phi)+cos\phi*sin(\pi*r*sin\phi))[/mm]

Ist der Ansatz so korrekt? Mich schreckt folgender Ausdruck sehr ab: [mm]cos(\pi*r*sin\phi)[/mm]. Denn den gesamten Ausdruck müsste ich ja nun integrieren. Kann man das ganze vereinfachen?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Kurvenintegral: Doppelpost
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:43 Do 17.03.2011
Autor: Loddar

.

Doppelpost


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]