www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Kurvenintegral
Kurvenintegral < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral: Integration über Polygonzug
Status: (Frage) beantwortet Status 
Datum: 20:49 So 06.05.2007
Autor: HatCet

Aufgabe
  Berechne das Kurvenintegral [mm] \integral_{\delta}{1/z dz} [/mm] für [mm] \delta=\overline{1,-i,-1,i,1} [/mm]

Ich habe mit dieser Aufgabenstellung ein Problem. Zwar liegt mir die Lösung vor, doch die weicht stark von meinem Lösungsweg ab.

Ich schreibe euch mal die Formel an, nach der ich diese Kurve berechnen wollte.

[mm] \delta [/mm] (t) := [mm] (\nu [/mm] - [mm] t)a_{\nu-1} [/mm] + (t [mm] -\nu [/mm] + [mm] 1)a_{\nu} [/mm]   t [mm] \in [\nu [/mm] - 1, [mm] \nu], \nu [/mm] =1,...,n

[mm] \delta [/mm] =: [mm] \overline{a_{0},a_{1}, ... ,a_{n}} [/mm]

[mm] \integral_{\delta}{f(z) dz} [/mm] = [mm] \summe_{\nu=1}^{n}(a_{\nu},a_{\nu-1}*\integral_{\nu-1}^{\nu}{f((\nu-t)a_{\nu-1}+(t-\nu+1)a_{\nu}) dt} [/mm]

Als Ergebnis soll [mm] -2i\pi [/mm] herauskommen

Ich danke für jede Antwort:-)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Kurvenintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:45 Do 17.05.2007
Autor: felixf

Hallo!

>  Berechne das Kurvenintegral [mm]\integral_{\delta}{1/z dz}[/mm] für
> [mm]\delta=\overline{1,-i,-1,i,1}[/mm]
>  Ich habe mit dieser Aufgabenstellung ein Problem. Zwar
> liegt mir die Lösung vor, doch die weicht stark von meinem
> Lösungsweg ab.
>
> Ich schreibe euch mal die Formel an, nach der ich diese
> Kurve berechnen wollte.
>  
> [mm]\delta[/mm] (t) := [mm](\nu[/mm] - [mm]t)a_{\nu-1}[/mm] + (t [mm]-\nu[/mm] + [mm]1)a_{\nu}[/mm]   t
> [mm]\in [\nu[/mm] - 1, [mm]\nu], \nu[/mm] =1,...,n
>  
> [mm]\delta[/mm] =: [mm]\overline{a_{0},a_{1}, ... ,a_{n}}[/mm]
>  
> [mm]\integral_{\delta}{f(z) dz}[/mm] =
> [mm]\summe_{\nu=1}^{n}(a_{\nu},a_{\nu-1}*\integral_{\nu-1}^{\nu}{f((\nu-t)a_{\nu-1}+(t-\nu+1)a_{\nu}) dt}[/mm]

Du meinst sicher: [mm]\summe_{\nu=1}^{n}(a_{\nu}-a_{\nu-1})*\integral_{\nu-1}^{\nu}{f((\nu-t)a_{\nu-1}+(t-\nu+1)a_{\nu}) dt}[/mm], oder?

> Als Ergebnis soll [mm]-2i\pi[/mm] herauskommen

Ja, das leuchtet ein.

> Ich danke für jede Antwort:-)

Was genau ist denn die Frage? Dein Loesungsweg sieht gut aus. Hast du was anderes als $-2 i [mm] \pi$ [/mm] raus? Wenn ja, schreib doch mal auf was du genau gerechnet hast.

LG Felix


Bezug
        
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 08:46 Fr 18.05.2007
Autor: wauwau

Verwende doch die Cauchysche Integralformel dann kommst du, da die konstante Funktion holomorph und dein integrationsweg negativ orientiert ist auf [mm] -2i\pi [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]