www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Kurvendiskussion e-Funktion
Kurvendiskussion e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:21 Mi 13.12.2006
Autor: datstina

Aufgabe
Für jedes s [mm] \in \IR [/mm] ist eine Funktion [mm] f_{s} [/mm] gegeben durch
[mm] f_{s}(x)= e^{2x}-2s*e^{x}-3s^{2}; [/mm] x [mm] \in \IR. [/mm]
Ihr Schaubild sei [mm] K_{s}. [/mm]
Untersuchen Sie [mm] K_{s} [/mm] für s>0 auf gemeinsame Punkte mit der x-Achse,auf Hoch-, Tief- und Wendepunkte sowie auf Asymptoten.

Ableitungen:
[mm] f'(x)=2e^{2x}-2se^{x} [/mm]
[mm] f''(x)=4e^{2x}-2se^{x} [/mm]
[mm] f'''(x)=8e^{2x}-2se^{x} [/mm]

Hallöchen,
bin kurz vorm Verzweifeln...schreibe morgen ne 12er-LK-Klausur und bin grad etwas stutzig geworden,da ich keine Ahnung hab wie man diese Funktion berechnet.Würde in der Aufgabe eine Funktion wie [mm] f(x)=(1-x)*e^{2x} [/mm] steht,wäre alles kein Problem,dann wüsste ich, wie ich auf die Nullstellen komme.Bei dieser Fkt. hab ich jedoch wirklich keine Ahnung,mein Lösen scheitert tatsächlich schon an den Nullstellen.Ich weiß nämlich nicht,wie ich das x aus dem Exponenten rauskriege...wenn ich beispielsweise bei dem Schritt bin: [mm] e^{2x}-2se^{x}=3s^{2} [/mm] komm ih niht weiter,denn ich weiß nicht,wie ich es dann schaffe,x allein stehen zu haben.
Folglich kriege ich auch die Extrem- und Wendepunkte nicht hin,denn wie soll das auch gehn,ich kann ja von den Ableitungen auch nicht die Nullstellen berechnen*gg*
Zu den Asymptoten hab ich auch eine Frage,und zwar würd ich gern wissen,ob mit der Aufgabenstellung gemeint ist,dass ich nur überprüfen soll,was mit beliebig wachsendenen und fallenden Argumenten x passiert,also nur,ob sie sich an Null annähern?
Würd mich sehr über eure Hilfe freuen!!!
Danke im Voraus,
datstina


        
Bezug
Kurvendiskussion e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Mi 13.12.2006
Autor: leduart

Hallo datsina
Das erste mal sind so Aufgaben anscheinend schwer, aber nach dem Tip ein für alle Mal leicht: setze [mm] e^x=y; e^{2x}=y^2 [/mm]
und lös die entsprechende Gleichung. Am Ende dann x=lny fertig!
Gruss leduart

Bezug
                
Bezug
Kurvendiskussion e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:07 Mi 13.12.2006
Autor: datstina

vielen dank,hat mir nach ein bisschen überlegen wirklich sehr weitergeholfen!
hab jetzt das richtige ergebnis raus,danke!
lg,
datstina

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]