www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Kurvendiskussion
Kurvendiskussion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Ableitung bilden!
Status: (Frage) beantwortet Status 
Datum: 12:47 So 11.12.2011
Autor: herbi_m

Aufgabe
Diskutiere den Verlauf der Funktion, die durch folgende Gleichung gegeben ist:
[mm] (x^{2}+a^{2})y-a^{3}=0 [/mm]

Wie kann ich von dieser Funktion die ABleitungen bilden. Bräuchte eine Hilfe zum Umformulieren bzw. einen Tipp, wie ich die Sache angehen kann.

Vielen Dank!
herbi

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 So 11.12.2011
Autor: MathePower

Hallo herbi_m,

> Diskutiere den Verlauf der Funktion, die durch folgende
> Gleichung gegeben ist:
> [mm](x^{2}+a^{2})y-a^{3}=0[/mm]
>  Wie kann ich von dieser Funktion die ABleitungen bilden.
> Bräuchte eine Hilfe zum Umformulieren bzw. einen Tipp, wie
> ich die Sache angehen kann.
>


Du kannst y=y(x) setzen  und dann nach x differenzieren.

Oder löse die Gleichung nach y und differenziere dann.


> Vielen Dank!
>  herbi


Gruss
MathePower

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 So 11.12.2011
Autor: herbi_m

Ok, das hatte ich mir auch überlegt, aber irgendwie erscheint mir meine Umformung sehr seltsam.

y= [mm] a^{3}/(x^{2}+a^{2}) [/mm]

Oder stimmt das so?!

Vielen Dank im Voraus!
herbi

Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 So 11.12.2011
Autor: fred97


> Ok, das hatte ich mir auch überlegt, aber irgendwie
> erscheint mir meine Umformung sehr seltsam.
>
> y= [mm]a^{3}/(x^{2}+a^{2})[/mm]
>  
> Oder stimmt das so?!

Es stimmt

FRED

>  
> Vielen Dank im Voraus!
>  herbi


Bezug
                                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 So 11.12.2011
Autor: herbi_m

Vielen Dank!

Wie sieht es denn mit der Ableitung aus?!

y´ = [mm] (-a^{3}2x)/x^{4}+2x^{2}a^{2}+a^{4} [/mm]



Bezug
                                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 So 11.12.2011
Autor: notinX

Hallo,

> Vielen Dank!
>  
> Wie sieht es denn mit der Ableitung aus?!
>  
> y´ = [mm](-a^{3}2x)/x^{4}+2x^{2}a^{2}+a^{4}[/mm]

Du scheinst das richtige zu meinen, hast es aber falsch aufgeschrieben.
So wie es da oben steht heißt das:
[mm] $y'=-\frac{2a^3x}{x^4}+2a^2x^2+a^4$ [/mm]

Richtig ist es so:
[mm] $y'=-\frac{2a^3x}{x^4+2a^2x^2+a^4}$ [/mm]
oder einfach so:
[mm] $y'=-\frac{2a^3x}{(x^2+a^2)^2}$ [/mm]

>  
>  

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]