www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Kurvendiskussion
Kurvendiskussion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Monotonie?
Status: (Frage) beantwortet Status 
Datum: 13:35 Sa 04.12.2004
Autor: davetheslave

Ich soll folgende Funktion diskutieren:

[mm] f(x) = ln ( \bruch {x}{x^2+1} +0,5 )[/mm], wobei ich es mir etwas einfacher mache, und erstmal nur das Argument von ln ansehe, also [mm] \bruch {x}{x^2+1} +0,5 [/mm]

1. Definitionsbereich  [mm] \IR [/mm]
2. Keine Definitionslücken, da Nenner immer positiv.
3. Funktion läuft gegen 0,5
4. Nullstelle bei 1,-1 (gefunden durch einsetzen, sieht man schon am [mm]x^2[/mm] )

5. Und bei der Monotonie setzt es irgendwie aus, ich weiss, wenn ich beweisen will, das die Funktion z.b. monoton steigend ist, das ich dann beweisen muss das der Nachfolger eines x immer größer und der Vorgänger immer kleiner ist. Bei Folgen und Reihen geht das ja immer durch z.B. vollständige Induktion. Aber bei gebrochen rationalen Funktionen??

Vielleicht hat ja noch jmd. eine Idee, es steht auch explizit in der Aufgabe, das nicht nach der zweiten Ableitung gefragt ist - was mich noch mehr verwirrt. :)


Danke!
David

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Sa 04.12.2004
Autor: Peter_Pein

Hallo Dave,

wenn ich Deinen Nickname ernst nähme, müßte ich Dir jetzt befehlen, die Nullstellen durch Rechnung zu ermitteln....

Im Ernst, was hast Du wo eingesetzt, um eine Nullstelle bei x=1 zu erhalten? x ist dann > 0, [mm] x^2+1 [/mm] ebenfalls und 1/2 war's auch schon immer....

zu 5. zur Monotonie braucht man zunächst die additive Konstante nicht mehr - wech damit! dann bleibt zu zeigen für [mm] $-1 und für $ 1 [mm] \le x_{1,2}$: [/mm] $ [mm] x_{1}f(x_{2}) [/mm] $

Viel Spaß dabei (hä - hä),
Peter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]