www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maple" - Kugelflaechenfunktionen
Kugelflaechenfunktionen < Maple < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maple"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kugelflaechenfunktionen: Richtige Koordinaten?
Status: (Frage) überfällig Status 
Datum: 09:36 Mo 26.09.2011
Autor: AT-Colt

Hallo Leute,

ich werde hier noch wahnsinnig. Bei mir produziert Maple gerade Mist und ich weiss nicht, woran es liegt. Hier mal das, was ich betrachten will:

Ich habe einen Einheitsvektor in Richtung [mm] $\mathbf{\hat{r}}(\theta,\phi)$ [/mm] gegeben, wobei [mm] $\theta$ [/mm] der Winkel ist, den der Vektor mit der z-Achse einschliesst und [mm] $\phi$ [/mm] der Winkel, den die Projektion des Vektors auf die xy-Ebene mit der x-Achse einschliesst.
Damit muesste der Vektor lauten:
[mm] $\mathbf{\hat{r}}(\theta,\phi)=\vektor{\cos(\phi)\sin(\theta) \\ \sin(\phi)\sin(\theta) \\ \cos(\theta)}$ [/mm]

Ich weiss, dass ich jede Komponente auch mit Spherical Harmonics/Kugelflaechenfunktionen darstellen kann als z.B.
[mm] $\cos(\phi)\sin(\theta) [/mm] = [mm] c_{1,-1}Y_{1,-1}(\theta,\phi) [/mm] + [mm] c_{1,0}Y_{1,0}(\theta,\phi) [/mm] + [mm] c_{1,1}Y_{1,1}(\theta,\phi)$ [/mm]

Ich weiss, dass [mm] $c_{1,i}$ [/mm] proportional zu [mm] $\sqrt{\frac{2\pi}{3}}$ [/mm] und reell ist [mm] ($c_{1,0} [/mm] = 0$) und dass [mm] $c_{2,i}$ [/mm] ebenfalls proportional zu dieser Zahl ist, aber rein imaginaer.

Jetzt wollte ich mit Maple diese Faktoren ausrechnen (um sie spaeter weiterzubenutzen), jedoch erhalte ich (modulo Numerik) fuer die Eingabe

c[1,-1]:=evalf(int(int(cos(phi)*sin(theta)*conjugate(SphericalY(1,-1,theta,phi))*sin(theta),theta=0..Pi),phi=0..2*Pi));
c[1, 0]:=evalf(int(int(cos(phi)*sin(theta)*conjugate(SphericalY(1, 0,theta,phi))*sin(theta),theta=0..Pi),phi=0..2*Pi));
c[1, 1]:=evalf(int(int(cos(phi)*sin(theta)*conjugate(SphericalY(1, 1,theta,phi))*sin(theta),theta=0..Pi),phi=0..2*Pi));

die ja die Projektion der einzelnen Komponenten von [mm] $\mathbf{\hat{r}}$ [/mm] auf die Spherical Harmonics ist,
[mm] $\sqrt{\frac{2\pi}{3}}i$,$0$,$\sqrt{\frac{2\pi}{3}}i$. [/mm]
Das sind aber rein imaginaere Zahlen.
Benutze ich statt cos(phi) in der Eingabe sin(phi), passt das Ergebnis, aber in der Maple-Hilfe sind die Kugelkoordinaten genau so gewaehlt, wie ich sie angegeben habe.

Dennoch, prinzipiell muesste ich ja, wenn ich die hier ausgerechneten c[1,i] an die entsprechenden Spherical Harmonics multipliziere und das ganze aufaddiere, wieder [mm] $\cos(\phi)\sin(\theta)$ [/mm] erhalten. Aber auch das ist nicht der Fall.

Wolfram Alpha liefert die erwarteten Ergebnisse, aber darin laesst sich nicht so komfortabel Rechnen.

Sieht jemand zufaellig den Fehler?

Viele Gruesse,

AT-Colt


        
Bezug
Kugelflaechenfunktionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Fr 30.09.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maple"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]