www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Krümmungsverhalten von Stammf.
Krümmungsverhalten von Stammf. < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Krümmungsverhalten von Stammf.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Mo 05.05.2008
Autor: Kathaaa

Aufgabe
Gegeben ist die in R definierte Funktion f mit
f(x)= 10{e^(-x/2) - e^(-x) }

Nun wird die in R definierte Integralfunktion Fa: [mm] \integral_{a}^{x}{f(t) dt} [/mm] betrachtet, der Graph von fa wird mit Ga bezeichnet.
Bestimmen Sie das Monotonie- und das Krümmungsverhalten von Ga ohne Ausführung der Integration (kurze Begründung).

Also ich hab den Graph von f vor mir. Der kommt im dritten Quadranten von minus unendlich, hat seine einzige Nullstelle in (0|0), und geht dann streng monoton steigend im ersten Quadranten weiter, hat sein Maximum bei (2ln2|2,5) und fällt dann streng monoton und nähert sich in plus unendlich der x-Achse an, sprich lim gegen + unendlich = 0 .
Monotonie verhalten von Ga ist klar ( streng monoton fallend, von minus unendlich bis 0, ab dann streng monoton steigend) ich kann mir den Graph ca. vorstellen, also wo er steigt und wo er fällt.  
Aber ich weiß nich wie er fällt/steigt, also ob er nun so --> ) fällt/steigt, oder ( <-- so. ist das verständlich? Daher versteh ich auch nich, wie Ga gekrümmt ist (ohne Rechnung). Kann mir das jemand erläutern?  
Vielen Danke :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Krümmungsverhalten von Stammf.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 Mo 05.05.2008
Autor: leduart

Hallo Katha
Du betrachtest offensichtlich f, nicht [mm] F_a, [/mm] die Integralfunktion.
dass du f so genau kennst ist aber gut, denn eigentlich willst du ja [mm] F_a [/mm] kennen.
Jetz solltest du dich erinnern, dass f(x) die Ableitung von [mm] F_a(x) [/mm] ist. d.h. wo f>0 steigt [mm] F_a [/mm] , wo f=0 hat F einen extremwert, wo f nen Extremwert hat, hat F nen Wendepunkt. (das sind schon deine kurzen Begründungen!)
Du sollst ja nur nicht integrieren, f ableiten darfst du, dann siehst du an F''=f' die Krümmung!
Gruss leduart



Bezug
                
Bezug
Krümmungsverhalten von Stammf.: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:21 Mo 05.05.2008
Autor: Kathaaa

vielen dank, also muss ich f ableiten und erkenns daher.. man man, da hätte ich auch drauf kommen können. :) dankeschöön

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]