www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Kruemmung einer Kurve
Kruemmung einer Kurve < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kruemmung einer Kurve: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:22 Do 10.02.2005
Autor: tulamdian

Ich habe ein Crossposting unter: http://matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=32421
erstellt...



Heya Forum, ich hoffe ich bin im Richtigen Forum geladen, die Frage ist naemlich irgendwie ein Mix....

Ich moechte die Kruemmung einer Kurve berechnen. Diese Kurve stammt aus einer Grafikdatei und ich habe nur die XY Koordinaten der Punkte entlang der Kurve zur Verfuegung.
Ich verwende drei Punke A,B,C die alle auf der Kurve liegen...

Ich habe zwei Verschiede Ansaetze ausprobiert, die alle fehlgeschlagen sind.


Ansatz A:

Berechnung der Kruemmung K mit Hilfe der Formel


K=  [mm] \bruch{y''(x)}{(1+y'(x)^2)^\bruch{3}{2}} [/mm]

Ich habe folgende Naeherungen verwendet
y'(x)=  [mm] \bruch{By-Ax}{Bx-Ax} [/mm]

[mm] y"(x)=\bruch{\bruch{Cy-By}{Cx-Bx}-\bruch{By-Ay}{Bx-Ax}}{\bruch{Cx+Bx}{2}-\bruch{Bx+Ax}{2}} [/mm]

Das klappt auch Theoretisch ganz gut, jedoch habe ich das Problem, dass wenn ich einen Kreis berechne das Ergebniss der Kruemmung von Konvex auf Konkav schwenkt sobald ich mit der Berechnung im dritten Quadranten angekommen bin...

Ich habe auch versucht ueber die Geradengleichung zu einer Loesung zu kommen.

Zuerst berechne ich den Winkel zwischen den Ortsvektoren A und C. (Klappt prima und die  Kruemmung der Kurve wird gut wiedergegeben. Jedoch wird Konkav/Konvex nicht beachtet

Hierzu wollte ich die Geradengleichung verwenden...

Ich habe die Geradengleichung fuer eine Gerade AB berechnet und dann Punkt C eingesetzt. Ist das Ergebniss >0 liegt der Punkt unter der Geraden ist es Groesser liegt der Punkt ueber der Geraden. => aehnliches Problem, wenn die Gerade AB im ersten Quadranten liegt und Punkt C unter der Geraden liegt bekomme ich ein anderes Erbebiss als wenn AB im dritten Quadranten liegt. Im ersten Fall bekomme ich das Ergebniss, der Punkt liegt unter der geraden und somit liegt eine Linkruemmung vor (ich gehe den Kreis entgegen des Uhrzeigersinns) Im zweiten Fall bekomme ich das Ergebniss C liegt ueber der Geraden es liegt ebenfalls eine Linkskruemmung vor...

Ich habe jetzt noch eine Komplizierte IF Abfrage konstruiert um herauszufinden welcher Fall gerade vorliegt, aber das klappt auch nicht. Entweder habe ich mir verprogrammiert oder es liegt an etwas anderem. Ich habe das Gefuehl ich vergallopiere mich gerade ganz gewaltig und wollte mal von euch eine Meinung zu meinem Problem anhoeren. Vielleicht ist es ja viel einfacher zu loesen..


        
Bezug
Kruemmung einer Kurve: zu wenig Punkte?
Status: (Antwort) fertig Status 
Datum: 17:18 Do 10.02.2005
Autor: leduart

Hallo tulamdian
Ganz versteh ich dein Problem nicht mit konkav und konvex! Wenn du einen Kreis um den Nullpkt anguckst hat er im 1. und 3. Quadranten 2 parallele Tangenten, die Radien stehen senkrecht darauf, liegen aber auf entgegengesetzten Seiten der Tangenten. Was ist jetzt konkav, was konvex? Sieht man aus pos y- Richtung runter auf den Kreis ist er im 1. und 2. Quadranten konvex, im 3. und 4. konkav; das kann man beliebig variieren. Nur wenn man eine parametrisierte Kurve in einer Richtung durchläuft, kann man sagen ob die Kurve nach rechts oder links gekrümmt ist.
2. Problem. Wenn du nur 3 Punkte nimmst, warum dann nicht einfach entweder einen Kreis durchlegen,dessenRadius und Mittelpkt du berechnen kannst, oder eine Parabel, deren Krümmung ja bekannt ist.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]